Properties

Label 6.6.703493.1-41.3-a2
Base field 6.6.703493.1
Conductor norm \( 41 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 6.6.703493.1

Generator \(a\), with minimal polynomial \( x^{6} - 2 x^{5} - 5 x^{4} + 11 x^{3} + 2 x^{2} - 9 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -9, 2, 11, -5, -2, 1]))
 
gp: K = nfinit(Polrev([1, -9, 2, 11, -5, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -9, 2, 11, -5, -2, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{5}-a^{4}-5a^{3}+5a^{2}+4a-2\right){x}{y}+\left(a^{5}-6a^{3}+8a+2\right){y}={x}^{3}+\left(2a^{5}-a^{4}-12a^{3}+5a^{2}+13a-1\right){x}^{2}+\left(a^{5}+5a^{4}-14a^{3}-20a^{2}+40a-9\right){x}+12a^{5}-24a^{4}-45a^{3}+110a^{2}-43a-8\)
sage: E = EllipticCurve([K([-2,4,5,-5,-1,1]),K([-1,13,5,-12,-1,2]),K([2,8,0,-6,0,1]),K([-9,40,-20,-14,5,1]),K([-8,-43,110,-45,-24,12])])
 
gp: E = ellinit([Polrev([-2,4,5,-5,-1,1]),Polrev([-1,13,5,-12,-1,2]),Polrev([2,8,0,-6,0,1]),Polrev([-9,40,-20,-14,5,1]),Polrev([-8,-43,110,-45,-24,12])], K);
 
magma: E := EllipticCurve([K![-2,4,5,-5,-1,1],K![-1,13,5,-12,-1,2],K![2,8,0,-6,0,1],K![-9,40,-20,-14,5,1],K![-8,-43,110,-45,-24,12]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^3-a^2-4a+3)\) = \((a^3-a^2-4a+3)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 41 \) = \(41\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-6a^5+a^4+38a^3-16a^2-60a+17)\) = \((a^3-a^2-4a+3)^{5}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 115856201 \) = \(41^{5}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{7619330091674956}{115856201} a^{5} - \frac{22560326971775052}{115856201} a^{4} - \frac{16506025526903560}{115856201} a^{3} + \frac{2434179943733724}{2825761} a^{2} - \frac{80280553523802984}{115856201} a + \frac{7994447419048309}{115856201} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-a^{5} + 7 a^{3} - 11 a - 1 : a^{5} - a^{4} - 6 a^{3} + 5 a^{2} + 7 a - 4 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 6510.9542230542624158623061798883254993 \)
Tamagawa product: \( 1 \)
Torsion order: \(2\)
Leading coefficient: \( 1.94068 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^3-a^2-4a+3)\) \(41\) \(1\) \(I_{5}\) Non-split multiplicative \(1\) \(1\) \(5\) \(5\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 41.3-a consists of curves linked by isogenies of degree 2.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.