Properties

Label 6.6.703493.1-13.4-a1
Base field 6.6.703493.1
Conductor norm \( 13 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 6.6.703493.1

Generator \(a\), with minimal polynomial \( x^{6} - 2 x^{5} - 5 x^{4} + 11 x^{3} + 2 x^{2} - 9 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -9, 2, 11, -5, -2, 1]))
 
gp: K = nfinit(Polrev([1, -9, 2, 11, -5, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -9, 2, 11, -5, -2, 1]);
 

Weierstrass equation

\({y}^2+\left(2a^{5}-a^{4}-12a^{3}+6a^{2}+14a-3\right){x}{y}+\left(2a^{5}-2a^{4}-11a^{3}+10a^{2}+9a-4\right){y}={x}^{3}+\left(-a^{5}+a^{4}+6a^{3}-6a^{2}-5a+4\right){x}^{2}+\left(a^{5}-4a^{3}+a^{2}-a+5\right){x}+a^{5}-5a^{3}+5a+2\)
sage: E = EllipticCurve([K([-3,14,6,-12,-1,2]),K([4,-5,-6,6,1,-1]),K([-4,9,10,-11,-2,2]),K([5,-1,1,-4,0,1]),K([2,5,0,-5,0,1])])
 
gp: E = ellinit([Polrev([-3,14,6,-12,-1,2]),Polrev([4,-5,-6,6,1,-1]),Polrev([-4,9,10,-11,-2,2]),Polrev([5,-1,1,-4,0,1]),Polrev([2,5,0,-5,0,1])], K);
 
magma: E := EllipticCurve([K![-3,14,6,-12,-1,2],K![4,-5,-6,6,1,-1],K![-4,9,10,-11,-2,2],K![5,-1,1,-4,0,1],K![2,5,0,-5,0,1]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-2a^5+a^4+12a^3-5a^2-14a+3)\) = \((-2a^5+a^4+12a^3-5a^2-14a+3)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 13 \) = \(13\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-3a^5+2a^4+18a^3-10a^2-26a+8)\) = \((-2a^5+a^4+12a^3-5a^2-14a+3)^{5}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 371293 \) = \(13^{5}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{212547114746}{371293} a^{5} - \frac{28453046632}{371293} a^{4} + \frac{1003531292060}{371293} a^{3} - \frac{199053407824}{371293} a^{2} - \frac{850826471640}{371293} a + \frac{100365149545}{371293} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-12 a^{5} + 5 a^{4} + 70 a^{3} - 24 a^{2} - 72 a + 8 : -45 a^{5} + 24 a^{4} + 256 a^{3} - 114 a^{2} - 237 a + 31 : 1\right)$
Height \(0.0019232170070705003710675348394286047507\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.0019232170070705003710675348394286047507 \)
Period: \( 31237.662803809166217890140102450431888 \)
Tamagawa product: \( 5 \)
Torsion order: \(1\)
Leading coefficient: \( 2.14881 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-2a^5+a^4+12a^3-5a^2-14a+3)\) \(13\) \(5\) \(I_{5}\) Split multiplicative \(-1\) \(1\) \(5\) \(5\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) .

Isogenies and isogeny class

This curve has no rational isogenies. Its isogeny class 13.4-a consists of this curve only.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.