Properties

Label 6.6.592661.1-91.1-b4
Base field 6.6.592661.1
Conductor norm \( 91 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 6.6.592661.1

Generator \(a\), with minimal polynomial \( x^{6} - x^{5} - 5 x^{4} + 4 x^{3} + 5 x^{2} - 2 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, -2, 5, 4, -5, -1, 1]))
 
gp: K = nfinit(Polrev([-1, -2, 5, 4, -5, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -2, 5, 4, -5, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{5}-4a^{3}+2a-1\right){x}{y}+\left(a^{5}-a^{4}-4a^{3}+4a^{2}+a-2\right){y}={x}^{3}+\left(-a^{5}+a^{4}+4a^{3}-3a^{2}-1\right){x}^{2}+\left(144a^{5}-1196a^{4}+370a^{3}+1760a^{2}-1685a-1839\right){x}+2258a^{5}-49271a^{4}+26550a^{3}+54926a^{2}-43051a-32680\)
sage: E = EllipticCurve([K([-1,2,0,-4,0,1]),K([-1,0,-3,4,1,-1]),K([-2,1,4,-4,-1,1]),K([-1839,-1685,1760,370,-1196,144]),K([-32680,-43051,54926,26550,-49271,2258])])
 
gp: E = ellinit([Polrev([-1,2,0,-4,0,1]),Polrev([-1,0,-3,4,1,-1]),Polrev([-2,1,4,-4,-1,1]),Polrev([-1839,-1685,1760,370,-1196,144]),Polrev([-32680,-43051,54926,26550,-49271,2258])], K);
 
magma: E := EllipticCurve([K![-1,2,0,-4,0,1],K![-1,0,-3,4,1,-1],K![-2,1,4,-4,-1,1],K![-1839,-1685,1760,370,-1196,144],K![-32680,-43051,54926,26550,-49271,2258]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((2a^5-a^4-10a^3+3a^2+9a-1)\) = \((a^4-4a^2+a+2)\cdot(-a^3+3a)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 91 \) = \(7\cdot13\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-15a^5-2a^4+77a^3+34a^2-94a-79)\) = \((a^4-4a^2+a+2)^{2}\cdot(-a^3+3a)^{7}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -3074677333 \) = \(-7^{2}\cdot13^{7}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{21597161649790866133606261509753255}{3074677333} a^{5} + \frac{28681417201034137650056150261573678}{3074677333} a^{4} + \frac{98577790071360663809442695639115372}{3074677333} a^{3} - \frac{118723926019387924147249784736135276}{3074677333} a^{2} - \frac{69042235603570084841387147093553420}{3074677333} a + \frac{65841412268351842671192507620649913}{3074677333} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(119 a^{5} + 27 a^{4} - 747 a^{3} - 32 a^{2} + 769 a + 344 : -3821 a^{5} - 208 a^{4} + 24250 a^{3} - 2951 a^{2} - 23899 a - 5429 : 1\right)$
Height \(5.5116316596709994785389889868931589763\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{23}{2} a^{5} - \frac{5}{4} a^{4} - \frac{69}{2} a^{3} + 7 a^{2} + \frac{21}{4} a - \frac{77}{4} : \frac{13}{4} a^{5} - \frac{61}{4} a^{4} - \frac{199}{8} a^{3} + \frac{155}{8} a^{2} + \frac{85}{8} a - \frac{103}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 5.5116316596709994785389889868931589763 \)
Period: \( 0.065234531297472637536364758891023166213 \)
Tamagawa product: \( 2 \)  =  \(2\cdot1\)
Torsion order: \(2\)
Leading coefficient: \( 3.36409 \)
Analytic order of Ш: \( 2401 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^4-4a^2+a+2)\) \(7\) \(2\) \(I_{2}\) Split multiplicative \(-1\) \(1\) \(2\) \(2\)
\((-a^3+3a)\) \(13\) \(1\) \(I_{7}\) Non-split multiplicative \(1\) \(1\) \(7\) \(7\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(7\) 7B.1.3

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 7 and 14.
Its isogeny class 91.1-b consists of curves linked by isogenies of degrees dividing 14.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.