Properties

Label 6.6.592661.1-91.1-b1
Base field 6.6.592661.1
Conductor norm \( 91 \)
CM no
Base change no
Q-curve no
Torsion order \( 14 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 6.6.592661.1

Generator \(a\), with minimal polynomial \( x^{6} - x^{5} - 5 x^{4} + 4 x^{3} + 5 x^{2} - 2 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, -2, 5, 4, -5, -1, 1]))
 
gp: K = nfinit(Polrev([-1, -2, 5, 4, -5, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -2, 5, 4, -5, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{5}-4a^{3}+a^{2}+2a-2\right){x}{y}+\left(a^{5}-a^{4}-4a^{3}+4a^{2}+a-2\right){y}={x}^{3}+\left(-a^{5}+4a^{3}+a^{2}\right){x}^{2}+\left(2a^{4}+7a^{3}+4a^{2}-4a-1\right){x}+3a^{5}+6a^{4}-a^{3}-2a^{2}+a-1\)
sage: E = EllipticCurve([K([-2,2,1,-4,0,1]),K([0,0,1,4,0,-1]),K([-2,1,4,-4,-1,1]),K([-1,-4,4,7,2,0]),K([-1,1,-2,-1,6,3])])
 
gp: E = ellinit([Polrev([-2,2,1,-4,0,1]),Polrev([0,0,1,4,0,-1]),Polrev([-2,1,4,-4,-1,1]),Polrev([-1,-4,4,7,2,0]),Polrev([-1,1,-2,-1,6,3])], K);
 
magma: E := EllipticCurve([K![-2,2,1,-4,0,1],K![0,0,1,4,0,-1],K![-2,1,4,-4,-1,1],K![-1,-4,4,7,2,0],K![-1,1,-2,-1,6,3]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((2a^5-a^4-10a^3+3a^2+9a-1)\) = \((a^4-4a^2+a+2)\cdot(-a^3+3a)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 91 \) = \(7\cdot13\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-3a^5+14a^4+10a^3-46a^2-a-9)\) = \((a^4-4a^2+a+2)^{7}\cdot(-a^3+3a)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -139178767 \) = \(-7^{7}\cdot13^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{75920719558025}{139178767} a^{5} + \frac{26110568103036}{139178767} a^{4} + \frac{396790644808426}{139178767} a^{3} - \frac{43416547811453}{139178767} a^{2} - \frac{408239914338619}{139178767} a - \frac{115757315220418}{139178767} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-a^{5} + a^{4} + 6 a^{3} - 5 a^{2} - 11 a + 7 : -17 a^{5} + 27 a^{4} + 75 a^{3} - 110 a^{2} - 38 a + 48 : 1\right)$
Height \(0.39368797569078567703849921334951135545\)
Torsion structure: \(\Z/14\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-9 a^{5} + 12 a^{4} + 41 a^{3} - 51 a^{2} - 30 a + 29 : -65 a^{5} + 90 a^{4} + 299 a^{3} - 370 a^{2} - 212 a + 205 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.39368797569078567703849921334951135545 \)
Period: \( 15349.554745232716667031555037539968963 \)
Tamagawa product: \( 14 \)  =  \(7\cdot2\)
Torsion order: \(14\)
Leading coefficient: \( 3.36409 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^4-4a^2+a+2)\) \(7\) \(7\) \(I_{7}\) Split multiplicative \(-1\) \(1\) \(7\) \(7\)
\((-a^3+3a)\) \(13\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(7\) 7B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 7 and 14.
Its isogeny class 91.1-b consists of curves linked by isogenies of degrees dividing 14.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.