Properties

Label 6.6.592661.1-83.1-c1
Base field 6.6.592661.1
Conductor norm \( 83 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 6.6.592661.1

Generator \(a\), with minimal polynomial \( x^{6} - x^{5} - 5 x^{4} + 4 x^{3} + 5 x^{2} - 2 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, -2, 5, 4, -5, -1, 1]))
 
gp: K = nfinit(Polrev([-1, -2, 5, 4, -5, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -2, 5, 4, -5, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{5}-a^{4}-5a^{3}+5a^{2}+4a-4\right){x}{y}+\left(2a^{5}-a^{4}-9a^{3}+5a^{2}+6a-4\right){y}={x}^{3}+\left(-a^{5}+2a^{4}+4a^{3}-8a^{2}-a+2\right){x}^{2}+\left(2a^{5}+5a^{4}-10a^{3}-23a^{2}+6a+7\right){x}-21a^{5}+13a^{4}+84a^{3}-42a^{2}-17a+6\)
sage: E = EllipticCurve([K([-4,4,5,-5,-1,1]),K([2,-1,-8,4,2,-1]),K([-4,6,5,-9,-1,2]),K([7,6,-23,-10,5,2]),K([6,-17,-42,84,13,-21])])
 
gp: E = ellinit([Polrev([-4,4,5,-5,-1,1]),Polrev([2,-1,-8,4,2,-1]),Polrev([-4,6,5,-9,-1,2]),Polrev([7,6,-23,-10,5,2]),Polrev([6,-17,-42,84,13,-21])], K);
 
magma: E := EllipticCurve([K![-4,4,5,-5,-1,1],K![2,-1,-8,4,2,-1],K![-4,6,5,-9,-1,2],K![7,6,-23,-10,5,2],K![6,-17,-42,84,13,-21]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-2a^5+a^4+9a^3-4a^2-6a+1)\) = \((-2a^5+a^4+9a^3-4a^2-6a+1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 83 \) = \(83\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((4a^5-5a^4-29a^3+24a^2+43a-18)\) = \((-2a^5+a^4+9a^3-4a^2-6a+1)^{4}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 47458321 \) = \(83^{4}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{15736963093640}{47458321} a^{5} - \frac{44917566551496}{47458321} a^{4} + \frac{6514884455608}{47458321} a^{3} + \frac{47332089860599}{47458321} a^{2} - \frac{11320884612420}{47458321} a - \frac{8429605989992}{47458321} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(5 a^{5} - 10 a^{4} - 17 a^{3} + 38 a^{2} - 4 a - 8 : 27 a^{5} - 52 a^{4} - 92 a^{3} + 194 a^{2} - 25 a - 34 : 1\right)$
Height \(0.0077073270358283725055118910388713102221\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.0077073270358283725055118910388713102221 \)
Period: \( 12401.088435760592188712674491098456689 \)
Tamagawa product: \( 4 \)
Torsion order: \(1\)
Leading coefficient: \( 2.97969 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-2a^5+a^4+9a^3-4a^2-6a+1)\) \(83\) \(4\) \(I_{4}\) Split multiplicative \(-1\) \(1\) \(4\) \(4\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) .

Isogenies and isogeny class

This curve has no rational isogenies. Its isogeny class 83.1-c consists of this curve only.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.