Properties

Label 6.6.592661.1-83.1-a1
Base field 6.6.592661.1
Conductor norm \( 83 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 6.6.592661.1

Generator \(a\), with minimal polynomial \( x^{6} - x^{5} - 5 x^{4} + 4 x^{3} + 5 x^{2} - 2 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, -2, 5, 4, -5, -1, 1]))
 
gp: K = nfinit(Polrev([-1, -2, 5, 4, -5, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -2, 5, 4, -5, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{5}-4a^{3}+a^{2}+2a-2\right){x}{y}+\left(a^{2}-2\right){y}={x}^{3}+\left(-a^{4}-a^{3}+5a^{2}+3a-2\right){x}^{2}+\left(-a^{5}+2a^{4}+6a^{3}+a-2\right){x}+a^{5}+7a^{2}-2a-2\)
sage: E = EllipticCurve([K([-2,2,1,-4,0,1]),K([-2,3,5,-1,-1,0]),K([-2,0,1,0,0,0]),K([-2,1,0,6,2,-1]),K([-2,-2,7,0,0,1])])
 
gp: E = ellinit([Polrev([-2,2,1,-4,0,1]),Polrev([-2,3,5,-1,-1,0]),Polrev([-2,0,1,0,0,0]),Polrev([-2,1,0,6,2,-1]),Polrev([-2,-2,7,0,0,1])], K);
 
magma: E := EllipticCurve([K![-2,2,1,-4,0,1],K![-2,3,5,-1,-1,0],K![-2,0,1,0,0,0],K![-2,1,0,6,2,-1],K![-2,-2,7,0,0,1]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-2a^5+a^4+9a^3-4a^2-6a+1)\) = \((-2a^5+a^4+9a^3-4a^2-6a+1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 83 \) = \(83\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((a^5-a^4-3a^3+4a^2-2a-2)\) = \((-2a^5+a^4+9a^3-4a^2-6a+1)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -83 \) = \(-83\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{2284010860}{83} a^{5} + \frac{884600390}{83} a^{4} - \frac{10195196217}{83} a^{3} - \frac{5005268270}{83} a^{2} + \frac{4484649386}{83} a + \frac{1645381845}{83} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(a^{5} - 6 a^{3} - 2 a^{2} + 7 a + 3 : -a^{5} + 2 a^{4} + 9 a^{3} - 4 a^{2} - 14 a - 2 : 1\right)$
Height \(0.0053871497872364074690901054330426353766\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.0053871497872364074690901054330426353766 \)
Period: \( 80327.792651535894170150705880349726313 \)
Tamagawa product: \( 1 \)
Torsion order: \(1\)
Leading coefficient: \( 3.37267 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-2a^5+a^4+9a^3-4a^2-6a+1)\) \(83\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) .

Isogenies and isogeny class

This curve has no rational isogenies. Its isogeny class 83.1-a consists of this curve only.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.