Properties

Label 6.6.592661.1-73.2-a1
Base field 6.6.592661.1
Conductor norm \( 73 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 6.6.592661.1

Generator \(a\), with minimal polynomial \( x^{6} - x^{5} - 5 x^{4} + 4 x^{3} + 5 x^{2} - 2 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, -2, 5, 4, -5, -1, 1]))
 
gp: K = nfinit(Polrev([-1, -2, 5, 4, -5, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -2, 5, 4, -5, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{5}-4a^{3}+a^{2}+2a-3\right){x}{y}+\left(a^{5}-a^{4}-5a^{3}+5a^{2}+5a-3\right){y}={x}^{3}+\left(-a^{5}+4a^{3}-a^{2}-2a+4\right){x}^{2}+\left(-50a^{5}+16a^{4}+254a^{3}-32a^{2}-245a-54\right){x}+20a^{5}-2a^{4}-112a^{3}-18a^{2}+134a+69\)
sage: E = EllipticCurve([K([-3,2,1,-4,0,1]),K([4,-2,-1,4,0,-1]),K([-3,5,5,-5,-1,1]),K([-54,-245,-32,254,16,-50]),K([69,134,-18,-112,-2,20])])
 
gp: E = ellinit([Polrev([-3,2,1,-4,0,1]),Polrev([4,-2,-1,4,0,-1]),Polrev([-3,5,5,-5,-1,1]),Polrev([-54,-245,-32,254,16,-50]),Polrev([69,134,-18,-112,-2,20])], K);
 
magma: E := EllipticCurve([K![-3,2,1,-4,0,1],K![4,-2,-1,4,0,-1],K![-3,5,5,-5,-1,1],K![-54,-245,-32,254,16,-50],K![69,134,-18,-112,-2,20]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a^5+2a^4+5a^3-8a^2-4a+3)\) = \((-a^5+2a^4+5a^3-8a^2-4a+3)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 73 \) = \(73\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((a^5-4a^4-3a^3+16a^2-a-9)\) = \((-a^5+2a^4+5a^3-8a^2-4a+3)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -5329 \) = \(-73^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{27717869787519429954038}{5329} a^{5} - \frac{51624793130186400377021}{5329} a^{4} - \frac{94062479398000747462595}{5329} a^{3} + \frac{192001252167547026433718}{5329} a^{2} - \frac{27013536581854090760860}{5329} a - \frac{32136310245606568782898}{5329} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(2 a^{5} - a^{4} - 11 a^{3} + 6 a^{2} + 18 a + 4 : -7 a^{5} - 4 a^{4} + 21 a^{3} - 4 a^{2} - 32 a - 13 : 1\right)$
Height \(0.40783754281909313993860893711619812474\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{3}{2} a^{5} - a^{4} - 7 a^{3} + 4 a^{2} + \frac{23}{4} a - \frac{11}{4} : \frac{7}{4} a^{5} - \frac{15}{8} a^{4} - \frac{69}{8} a^{3} + \frac{25}{4} a^{2} + \frac{49}{8} a - \frac{15}{4} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.40783754281909313993860893711619812474 \)
Period: \( 1954.3181944465643497134850926631832629 \)
Tamagawa product: \( 2 \)
Torsion order: \(2\)
Leading coefficient: \( 3.10599 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^5+2a^4+5a^3-8a^2-4a+3)\) \(73\) \(2\) \(I_{2}\) Split multiplicative \(-1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 73.2-a consists of curves linked by isogenies of degree 2.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.