Properties

Label 6.6.592661.1-47.1-a4
Base field 6.6.592661.1
Conductor norm \( 47 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 6.6.592661.1

Generator \(a\), with minimal polynomial \( x^{6} - x^{5} - 5 x^{4} + 4 x^{3} + 5 x^{2} - 2 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, -2, 5, 4, -5, -1, 1]))
 
gp: K = nfinit(Polrev([-1, -2, 5, 4, -5, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -2, 5, 4, -5, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a+1\right){x}{y}+\left(a^{5}-a^{4}-4a^{3}+4a^{2}+a-1\right){y}={x}^{3}+\left(-2a^{5}+3a^{4}+9a^{3}-11a^{2}-6a+3\right){x}^{2}+\left(21a^{5}-24a^{4}-64a^{3}+75a^{2}-9a-80\right){x}+258a^{5}-185a^{4}-1121a^{3}+481a^{2}+835a-133\)
sage: E = EllipticCurve([K([1,1,0,0,0,0]),K([3,-6,-11,9,3,-2]),K([-1,1,4,-4,-1,1]),K([-80,-9,75,-64,-24,21]),K([-133,835,481,-1121,-185,258])])
 
gp: E = ellinit([Polrev([1,1,0,0,0,0]),Polrev([3,-6,-11,9,3,-2]),Polrev([-1,1,4,-4,-1,1]),Polrev([-80,-9,75,-64,-24,21]),Polrev([-133,835,481,-1121,-185,258])], K);
 
magma: E := EllipticCurve([K![1,1,0,0,0,0],K![3,-6,-11,9,3,-2],K![-1,1,4,-4,-1,1],K![-80,-9,75,-64,-24,21],K![-133,835,481,-1121,-185,258]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^5-a^4-4a^3+4a^2-2)\) = \((a^5-a^4-4a^3+4a^2-2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 47 \) = \(47\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((a^5-a^4-4a^3+4a^2-2)\) = \((a^5-a^4-4a^3+4a^2-2)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -47 \) = \(-47\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{189659136243447821918}{47} a^{5} + \frac{549799724355498772041}{47} a^{4} - \frac{95709927534834499511}{47} a^{3} - \frac{576894450215570965493}{47} a^{2} + \frac{147159572937485065425}{47} a + \frac{99879321213836341917}{47} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(2 a^{5} - 5 a^{4} - 9 a^{3} + \frac{75}{4} a^{2} + \frac{19}{2} a - \frac{21}{4} : \frac{5}{2} a^{4} + \frac{9}{8} a^{3} - \frac{89}{8} a^{2} - \frac{37}{8} a + \frac{17}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 261.24541091817277111848685219167048773 \)
Tamagawa product: \( 1 \)
Torsion order: \(2\)
Leading coefficient: \( 1.35739 \)
Analytic order of Ш: \( 16 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^5-a^4-4a^3+4a^2-2)\) \(47\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 47.1-a consists of curves linked by isogenies of degrees dividing 4.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.