Properties

Label 6.6.592661.1-47.1-a1
Base field 6.6.592661.1
Conductor norm \( 47 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 6.6.592661.1

Generator \(a\), with minimal polynomial \( x^{6} - x^{5} - 5 x^{4} + 4 x^{3} + 5 x^{2} - 2 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, -2, 5, 4, -5, -1, 1]))
 
gp: K = nfinit(Polrev([-1, -2, 5, 4, -5, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -2, 5, 4, -5, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{5}-4a^{3}+a^{2}+a-2\right){x}{y}+\left(2a^{5}-a^{4}-9a^{3}+4a^{2}+6a-2\right){y}={x}^{3}+\left(-a^{4}+5a^{2}-3\right){x}^{2}+\left(-60a^{5}+84a^{4}+210a^{3}-318a^{2}+13a+37\right){x}-358a^{5}+547a^{4}+1214a^{3}-2098a^{2}+208a+319\)
sage: E = EllipticCurve([K([-2,1,1,-4,0,1]),K([-3,0,5,0,-1,0]),K([-2,6,4,-9,-1,2]),K([37,13,-318,210,84,-60]),K([319,208,-2098,1214,547,-358])])
 
gp: E = ellinit([Polrev([-2,1,1,-4,0,1]),Polrev([-3,0,5,0,-1,0]),Polrev([-2,6,4,-9,-1,2]),Polrev([37,13,-318,210,84,-60]),Polrev([319,208,-2098,1214,547,-358])], K);
 
magma: E := EllipticCurve([K![-2,1,1,-4,0,1],K![-3,0,5,0,-1,0],K![-2,6,4,-9,-1,2],K![37,13,-318,210,84,-60],K![319,208,-2098,1214,547,-358]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^5-a^4-4a^3+4a^2-2)\) = \((a^5-a^4-4a^3+4a^2-2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 47 \) = \(47\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-3a^5+12a^4+10a^3-54a^2+3a+20)\) = \((a^5-a^4-4a^3+4a^2-2)^{4}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 4879681 \) = \(47^{4}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{239523065600391312345982}{4879681} a^{5} - \frac{92745950730456822976455}{4879681} a^{4} + \frac{1069070700534264670095929}{4879681} a^{3} + \frac{524880302626165548039899}{4879681} a^{2} - \frac{469955941031294527229375}{4879681} a - \frac{172733643671563536452835}{4879681} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{7}{2} a^{5} + \frac{9}{2} a^{4} + \frac{27}{2} a^{3} - \frac{73}{4} a^{2} - \frac{21}{4} a + 4 : \frac{1}{8} a^{5} + \frac{35}{8} a^{4} + \frac{23}{8} a^{3} - \frac{113}{8} a^{2} - \frac{47}{8} a + \frac{19}{4} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 32.655676364771596389810856523958810966 \)
Tamagawa product: \( 2 \)
Torsion order: \(2\)
Leading coefficient: \( 1.35739 \)
Analytic order of Ш: \( 64 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^5-a^4-4a^3+4a^2-2)\) \(47\) \(2\) \(I_{4}\) Non-split multiplicative \(1\) \(1\) \(4\) \(4\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 47.1-a consists of curves linked by isogenies of degrees dividing 4.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.