Properties

Label 6.6.592661.1-31.1-c4
Base field 6.6.592661.1
Conductor norm \( 31 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 6.6.592661.1

Generator \(a\), with minimal polynomial \( x^{6} - x^{5} - 5 x^{4} + 4 x^{3} + 5 x^{2} - 2 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, -2, 5, 4, -5, -1, 1]))
 
gp: K = nfinit(Polrev([-1, -2, 5, 4, -5, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -2, 5, 4, -5, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(2a^{5}-a^{4}-9a^{3}+4a^{2}+6a-3\right){x}{y}+\left(a^{4}-4a^{2}+a+2\right){y}={x}^{3}+\left(-a^{4}+a^{3}+4a^{2}-4a\right){x}^{2}+\left(-74a^{5}+74a^{4}+339a^{3}-244a^{2}-243a-44\right){x}-500a^{5}+472a^{4}+2228a^{3}-1549a^{2}-1348a-204\)
sage: E = EllipticCurve([K([-3,6,4,-9,-1,2]),K([0,-4,4,1,-1,0]),K([2,1,-4,0,1,0]),K([-44,-243,-244,339,74,-74]),K([-204,-1348,-1549,2228,472,-500])])
 
gp: E = ellinit([Polrev([-3,6,4,-9,-1,2]),Polrev([0,-4,4,1,-1,0]),Polrev([2,1,-4,0,1,0]),Polrev([-44,-243,-244,339,74,-74]),Polrev([-204,-1348,-1549,2228,472,-500])], K);
 
magma: E := EllipticCurve([K![-3,6,4,-9,-1,2],K![0,-4,4,1,-1,0],K![2,1,-4,0,1,0],K![-44,-243,-244,339,74,-74],K![-204,-1348,-1549,2228,472,-500]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a^5+5a^3-5a+1)\) = \((-a^5+5a^3-5a+1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 31 \) = \(31\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-a^5+5a^3-5a+1)\) = \((-a^5+5a^3-5a+1)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -31 \) = \(-31\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{959737921004117219213596641}{31} a^{5} + \frac{1004563318667521336749896161}{31} a^{4} - \frac{2742643960681810144259812298}{31} a^{3} - \frac{1774433818463953428848303523}{31} a^{2} + 37643402810618935845636590 a + \frac{468918340227326770581313560}{31} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(2 a^{5} + \frac{3}{2} a^{4} - \frac{57}{4} a^{3} - \frac{17}{2} a^{2} + \frac{95}{4} a + \frac{17}{2} : -\frac{9}{4} a^{5} + \frac{9}{8} a^{4} + \frac{39}{4} a^{3} - \frac{11}{4} a^{2} - \frac{17}{4} a - \frac{3}{4} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 192.47176232344938916641098369062627499 \)
Tamagawa product: \( 1 \)
Torsion order: \(2\)
Leading coefficient: \( 1.00006 \)
Analytic order of Ш: \( 16 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^5+5a^3-5a+1)\) \(31\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 31.1-c consists of curves linked by isogenies of degrees dividing 4.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.