Properties

Base field 6.6.485125.1
Label 6.6.485125.1-9.1-a4
Conductor \((3,-a^{2} + 2)\)
Conductor norm \( 9 \)
CM no
base-change no
Q-curve no
Torsion order \( 2 \)
Rank not available

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Base field 6.6.485125.1

Generator \(a\), with minimal polynomial \( x^{6} - 2 x^{5} - 4 x^{4} + 8 x^{3} + 2 x^{2} - 5 x + 1 \); class number \(1\).

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -5, 2, 8, -4, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^6 - 2*x^5 - 4*x^4 + 8*x^3 + 2*x^2 - 5*x + 1)
 
gp (2.8): K = nfinit(a^6 - 2*a^5 - 4*a^4 + 8*a^3 + 2*a^2 - 5*a + 1);
 

Weierstrass equation

\( y^2 + \left(2 a^{5} - 2 a^{4} - 9 a^{3} + 7 a^{2} + 8 a - 3\right) x y + \left(-a^{5} + 2 a^{4} + 4 a^{3} - 6 a^{2} - 2 a + 2\right) y = x^{3} + \left(-a^{4} + 4 a^{2} + a - 2\right) x^{2} + \left(-96 a^{5} + 119 a^{4} + 476 a^{3} - 414 a^{2} - 511 a + 108\right) x + 463 a^{5} - 597 a^{4} - 2282 a^{3} + 2083 a^{2} + 2445 a - 594 \)
magma: E := ChangeRing(EllipticCurve([2*a^5 - 2*a^4 - 9*a^3 + 7*a^2 + 8*a - 3, -a^4 + 4*a^2 + a - 2, -a^5 + 2*a^4 + 4*a^3 - 6*a^2 - 2*a + 2, -96*a^5 + 119*a^4 + 476*a^3 - 414*a^2 - 511*a + 108, 463*a^5 - 597*a^4 - 2282*a^3 + 2083*a^2 + 2445*a - 594]),K);
 
sage: E = EllipticCurve(K, [2*a^5 - 2*a^4 - 9*a^3 + 7*a^2 + 8*a - 3, -a^4 + 4*a^2 + a - 2, -a^5 + 2*a^4 + 4*a^3 - 6*a^2 - 2*a + 2, -96*a^5 + 119*a^4 + 476*a^3 - 414*a^2 - 511*a + 108, 463*a^5 - 597*a^4 - 2282*a^3 + 2083*a^2 + 2445*a - 594])
 
gp (2.8): E = ellinit([2*a^5 - 2*a^4 - 9*a^3 + 7*a^2 + 8*a - 3, -a^4 + 4*a^2 + a - 2, -a^5 + 2*a^4 + 4*a^3 - 6*a^2 - 2*a + 2, -96*a^5 + 119*a^4 + 476*a^3 - 414*a^2 - 511*a + 108, 463*a^5 - 597*a^4 - 2282*a^3 + 2083*a^2 + 2445*a - 594],K)
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

\(\mathfrak{N} \) = \((3,-a^{2} + 2)\) = \( \left(a^{2} - 2\right) \)
magma: Conductor(E);
 
sage: E.conductor()
 
\(N(\mathfrak{N}) \) = \( 9 \) = \( 9 \)
magma: Norm(Conductor(E));
 
sage: E.conductor().norm()
 
\(\mathfrak{D}\) = \((729,729 a^{5} - 729 a^{4} - 3645 a^{3} + 2916 a^{2} + 3645 a - 1458,156 a^{5} - 155 a^{4} - 781 a^{3} + 621 a^{2} + 782 a + 134,44 a^{5} - 44 a^{4} - 219 a^{3} + 175 a^{2} + 217 a + 381,511 a^{5} - 511 a^{4} - 2555 a^{3} + 2044 a^{2} + 2556 a - 979,384 a^{5} - 384 a^{4} - 1920 a^{3} + 1537 a^{2} + 1920 a - 569)\) = \( \left(a^{2} - 2\right)^{6} \)
magma: Discriminant(E);
 
sage: E.discriminant()
 
gp (2.8): E.disc
 
\(N(\mathfrak{D})\) = \( 531441 \) = \( 9^{6} \)
magma: Norm(Discriminant(E));
 
sage: E.discriminant().norm()
 
gp (2.8): norm(E.disc)
 
\(j\) = \( \frac{28415401415371915}{729} a^{5} - \frac{83236468416132128}{729} a^{4} - \frac{36313576737257882}{729} a^{3} + \frac{261074947130156095}{729} a^{2} - \frac{185789098122198698}{729} a + \frac{10192405658194375}{243} \)
magma: jInvariant(E);
 
sage: E.j_invariant()
 
gp (2.8): E.j
 
\( \text{End} (E) \) = \(\Z\)   (no Complex Multiplication )
magma: HasComplexMultiplication(E);
 
sage: E.has_cm(), E.cm_discriminant()
 
\( \text{ST} (E) \) = $\mathrm{SU}(2)$

Mordell-Weil group

Rank not available.
magma: Rank(E);
 
sage: E.rank()
 
magma: Generators(E); // includes torsion
 
sage: E.gens()
 

Regulator: not available

magma: Regulator(Generators(E));
 
sage: E.regulator_of_points(E.gens())
 

Torsion subgroup

Structure: \(\Z/2\Z\)
magma: TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[2]
 
magma: Order(TorsionSubgroup(E));
 
sage: E.torsion_order()
 
gp (2.8): elltors(E)[1]
 
Generator: $\left(a^{5} - \frac{1}{4} a^{4} - \frac{11}{2} a^{3} - a^{2} + \frac{27}{4} a + 3 : -\frac{9}{4} a^{5} + \frac{15}{4} a^{4} + \frac{95}{8} a^{3} - \frac{117}{8} a^{2} - \frac{117}{8} a + \frac{43}{8} : 1\right)$
magma: [f(P): P in Generators(T)] where T,f:=TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[3]
 

Local data at primes of bad reduction

magma: LocalInformation(E);
 
sage: E.local_data()
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(a^{2} - 2\right) \) \(9\) \(2\) \(I_{6}\) Non-split multiplicative \(1\) \(1\) \(6\) \(6\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 9.1-a consists of curves linked by isogenies of degrees dividing 6.

Base change

This curve is not the base-change of an elliptic curve defined over \(\Q\). It is not a \(\Q\)-curve.