Properties

Base field 6.6.485125.1
Label 6.6.485125.1-9.1-a1
Conductor \((3,-a^{2} + 2)\)
Conductor norm \( 9 \)
CM no
base-change no
Q-curve no
Torsion order \( 2 \)
Rank not available

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Base field 6.6.485125.1

Generator \(a\), with minimal polynomial \( x^{6} - 2 x^{5} - 4 x^{4} + 8 x^{3} + 2 x^{2} - 5 x + 1 \); class number \(1\).

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -5, 2, 8, -4, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^6 - 2*x^5 - 4*x^4 + 8*x^3 + 2*x^2 - 5*x + 1)
 
gp (2.8): K = nfinit(a^6 - 2*a^5 - 4*a^4 + 8*a^3 + 2*a^2 - 5*a + 1);
 

Weierstrass equation

\( y^2 + \left(a^{4} - 3 a^{2} + 1\right) x y + \left(a^{5} - a^{4} - 4 a^{3} + 3 a^{2} + 2 a - 1\right) y = x^{3} + \left(-a^{5} + 2 a^{4} + 4 a^{3} - 6 a^{2} - 3 a + 1\right) x^{2} + \left(a^{5} - 8 a^{4} + 51 a^{3} - 29 a^{2} - 63 a + 5\right) x + 120 a^{5} - 261 a^{4} - 176 a^{3} + 398 a^{2} + 152 a - 73 \)
magma: E := ChangeRing(EllipticCurve([a^4 - 3*a^2 + 1, -a^5 + 2*a^4 + 4*a^3 - 6*a^2 - 3*a + 1, a^5 - a^4 - 4*a^3 + 3*a^2 + 2*a - 1, a^5 - 8*a^4 + 51*a^3 - 29*a^2 - 63*a + 5, 120*a^5 - 261*a^4 - 176*a^3 + 398*a^2 + 152*a - 73]),K);
 
sage: E = EllipticCurve(K, [a^4 - 3*a^2 + 1, -a^5 + 2*a^4 + 4*a^3 - 6*a^2 - 3*a + 1, a^5 - a^4 - 4*a^3 + 3*a^2 + 2*a - 1, a^5 - 8*a^4 + 51*a^3 - 29*a^2 - 63*a + 5, 120*a^5 - 261*a^4 - 176*a^3 + 398*a^2 + 152*a - 73])
 
gp (2.8): E = ellinit([a^4 - 3*a^2 + 1, -a^5 + 2*a^4 + 4*a^3 - 6*a^2 - 3*a + 1, a^5 - a^4 - 4*a^3 + 3*a^2 + 2*a - 1, a^5 - 8*a^4 + 51*a^3 - 29*a^2 - 63*a + 5, 120*a^5 - 261*a^4 - 176*a^3 + 398*a^2 + 152*a - 73],K)
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

\(\mathfrak{N} \) = \((3,-a^{2} + 2)\) = \( \left(a^{2} - 2\right) \)
magma: Conductor(E);
 
sage: E.conductor()
 
\(N(\mathfrak{N}) \) = \( 9 \) = \( 9 \)
magma: Norm(Conductor(E));
 
sage: E.conductor().norm()
 
\(\mathfrak{D}\) = \((387420489,387420489 a^{5} - 387420489 a^{4} - 1937102445 a^{3} + 1549681956 a^{2} + 1937102445 a - 774840978,301229517 a^{5} - 301229516 a^{4} - 1506147586 a^{3} + 1204918065 a^{2} + 1506147587 a - 505290178,8876348 a^{5} - 8876348 a^{4} - 44381739 a^{3} + 35505391 a^{2} + 44381737 a + 95825244,122454286 a^{5} - 122454286 a^{4} - 612271430 a^{3} + 489817144 a^{2} + 612271431 a - 236032225,133432170 a^{5} - 133432170 a^{4} - 667160850 a^{3} + 533728681 a^{2} + 667160850 a + 43241524)\) = \( \left(a^{2} - 2\right)^{18} \)
magma: Discriminant(E);
 
sage: E.discriminant()
 
gp (2.8): E.disc
 
\(N(\mathfrak{D})\) = \( 150094635296999121 \) = \( 9^{18} \)
magma: Norm(Discriminant(E));
 
sage: E.discriminant().norm()
 
gp (2.8): norm(E.disc)
 
\(j\) = \( \frac{19534593968251450184}{387420489} a^{5} - \frac{25732253879599264147}{387420489} a^{4} - \frac{95706620059011517651}{387420489} a^{3} + \frac{90934603429118494397}{387420489} a^{2} + \frac{101153218100845110134}{387420489} a - \frac{1059714138202501808}{14348907} \)
magma: jInvariant(E);
 
sage: E.j_invariant()
 
gp (2.8): E.j
 
\( \text{End} (E) \) = \(\Z\)   (no Complex Multiplication )
magma: HasComplexMultiplication(E);
 
sage: E.has_cm(), E.cm_discriminant()
 
\( \text{ST} (E) \) = $\mathrm{SU}(2)$

Mordell-Weil group

Rank not available.
magma: Rank(E);
 
sage: E.rank()
 
magma: Generators(E); // includes torsion
 
sage: E.gens()
 

Regulator: not available

magma: Regulator(Generators(E));
 
sage: E.regulator_of_points(E.gens())
 

Torsion subgroup

Structure: \(\Z/2\Z\)
magma: TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[2]
 
magma: Order(TorsionSubgroup(E));
 
sage: E.torsion_order()
 
gp (2.8): elltors(E)[1]
 
Generator: $\left(-\frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{7}{4} a^{2} + 3 a + \frac{13}{4} : \frac{13}{8} a^{5} + \frac{1}{8} a^{4} - \frac{15}{2} a^{3} + \frac{5}{2} a^{2} + \frac{47}{8} a - \frac{23}{8} : 1\right)$
magma: [f(P): P in Generators(T)] where T,f:=TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[3]
 

Local data at primes of bad reduction

magma: LocalInformation(E);
 
sage: E.local_data()
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(a^{2} - 2\right) \) \(9\) \(2\) \(I_{18}\) Non-split multiplicative \(1\) \(1\) \(18\) \(18\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 9.1-a consists of curves linked by isogenies of degrees dividing 6.

Base change

This curve is not the base-change of an elliptic curve defined over \(\Q\). It is not a \(\Q\)-curve.