Properties

Base field 6.6.485125.1
Label 6.6.485125.1-64.1-b1
Conductor \((2,-2)\)
Conductor norm \( 64 \)
CM no
base-change no
Q-curve no
Torsion order \( 1 \)
Rank not available

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Base field 6.6.485125.1

Generator \(a\), with minimal polynomial \( x^{6} - 2 x^{5} - 4 x^{4} + 8 x^{3} + 2 x^{2} - 5 x + 1 \); class number \(1\).

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -5, 2, 8, -4, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^6 - 2*x^5 - 4*x^4 + 8*x^3 + 2*x^2 - 5*x + 1)
 
gp (2.8): K = nfinit(a^6 - 2*a^5 - 4*a^4 + 8*a^3 + 2*a^2 - 5*a + 1);
 

Weierstrass equation

\( y^2 + \left(a^{4} - 4 a^{2} - a + 3\right) x y + \left(-a^{5} + 2 a^{4} + 4 a^{3} - 7 a^{2} - 2 a + 4\right) y = x^{3} + \left(a^{5} - 2 a^{4} - 4 a^{3} + 7 a^{2} + 3 a - 2\right) x^{2} + \left(-98 a^{5} + 20 a^{4} + 286 a^{3} - 83 a^{2} + 45 a - 74\right) x - 14247 a^{5} - 1644 a^{4} + 52563 a^{3} - 926 a^{2} - 28214 a + 5435 \)
magma: E := ChangeRing(EllipticCurve([a^4 - 4*a^2 - a + 3, a^5 - 2*a^4 - 4*a^3 + 7*a^2 + 3*a - 2, -a^5 + 2*a^4 + 4*a^3 - 7*a^2 - 2*a + 4, -98*a^5 + 20*a^4 + 286*a^3 - 83*a^2 + 45*a - 74, -14247*a^5 - 1644*a^4 + 52563*a^3 - 926*a^2 - 28214*a + 5435]),K);
 
sage: E = EllipticCurve(K, [a^4 - 4*a^2 - a + 3, a^5 - 2*a^4 - 4*a^3 + 7*a^2 + 3*a - 2, -a^5 + 2*a^4 + 4*a^3 - 7*a^2 - 2*a + 4, -98*a^5 + 20*a^4 + 286*a^3 - 83*a^2 + 45*a - 74, -14247*a^5 - 1644*a^4 + 52563*a^3 - 926*a^2 - 28214*a + 5435])
 
gp (2.8): E = ellinit([a^4 - 4*a^2 - a + 3, a^5 - 2*a^4 - 4*a^3 + 7*a^2 + 3*a - 2, -a^5 + 2*a^4 + 4*a^3 - 7*a^2 - 2*a + 4, -98*a^5 + 20*a^4 + 286*a^3 - 83*a^2 + 45*a - 74, -14247*a^5 - 1644*a^4 + 52563*a^3 - 926*a^2 - 28214*a + 5435],K)
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

\(\mathfrak{N} \) = \((2,-2)\) = \( \left(2\right) \)
magma: Conductor(E);
 
sage: E.conductor()
 
\(N(\mathfrak{N}) \) = \( 64 \) = \( 64 \)
magma: Norm(Conductor(E));
 
sage: E.conductor().norm()
 
\(\mathfrak{D}\) = \((128,128 a^{5} - 128 a^{4} - 640 a^{3} + 512 a^{2} + 640 a - 256,-128 a^{5} + 256 a^{4} + 512 a^{3} - 896 a^{2} - 384 a + 384,128 a^{5} - 128 a^{4} - 512 a^{3} + 384 a^{2} + 256 a - 128,128 a,-128 a^{5} + 128 a^{4} + 640 a^{3} - 384 a^{2} - 640 a)\) = \( \left(2\right)^{7} \)
magma: Discriminant(E);
 
sage: E.discriminant()
 
gp (2.8): E.disc
 
\(N(\mathfrak{D})\) = \( 4398046511104 \) = \( 64^{7} \)
magma: Norm(Discriminant(E));
 
sage: E.discriminant().norm()
 
gp (2.8): norm(E.disc)
 
\(j\) = \( -\frac{661423578612904638319}{64} a^{5} + \frac{2517381707375973330273}{64} a^{4} - \frac{950355314310097681067}{32} a^{3} - \frac{3717389947572253097155}{128} a^{2} + \frac{4067931975116471451485}{128} a - \frac{366235659528699810345}{64} \)
magma: jInvariant(E);
 
sage: E.j_invariant()
 
gp (2.8): E.j
 
\( \text{End} (E) \) = \(\Z\)   (no Complex Multiplication )
magma: HasComplexMultiplication(E);
 
sage: E.has_cm(), E.cm_discriminant()
 
\( \text{ST} (E) \) = $\mathrm{SU}(2)$

Mordell-Weil group

Rank not available.
magma: Rank(E);
 
sage: E.rank()
 
magma: Generators(E); // includes torsion
 
sage: E.gens()
 

Regulator: not available

magma: Regulator(Generators(E));
 
sage: E.regulator_of_points(E.gens())
 

Torsion subgroup

Structure: Trivial
magma: TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[2]
 
magma: Order(TorsionSubgroup(E));
 
sage: E.torsion_order()
 
gp (2.8): elltors(E)[1]
 

Local data at primes of bad reduction

magma: LocalInformation(E);
 
sage: E.local_data()
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(2\right) \) \(64\) \(7\) \(I_{7}\) Split multiplicative \(-1\) \(1\) \(7\) \(7\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p \) except those listed.

prime Image of Galois Representation
\(7\) 7B.1.3

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 7.
Its isogeny class 64.1-b consists of curves linked by isogenies of degree 7.

Base change

This curve is not the base-change of an elliptic curve defined over \(\Q\). It is not a \(\Q\)-curve.