Properties

Label 6.6.485125.1-64.1-b1
Base field 6.6.485125.1
Conductor norm \( 64 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 6.6.485125.1

Generator \(a\), with minimal polynomial \( x^{6} - 2 x^{5} - 4 x^{4} + 8 x^{3} + 2 x^{2} - 5 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -5, 2, 8, -4, -2, 1]))
 
gp: K = nfinit(Polrev([1, -5, 2, 8, -4, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -5, 2, 8, -4, -2, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{4}-4a^{2}-a+3\right){x}{y}+\left(-a^{5}+2a^{4}+4a^{3}-7a^{2}-2a+4\right){y}={x}^{3}+\left(a^{5}-2a^{4}-4a^{3}+7a^{2}+3a-2\right){x}^{2}+\left(-98a^{5}+20a^{4}+286a^{3}-83a^{2}+45a-74\right){x}-14247a^{5}-1644a^{4}+52563a^{3}-926a^{2}-28214a+5435\)
sage: E = EllipticCurve([K([3,-1,-4,0,1,0]),K([-2,3,7,-4,-2,1]),K([4,-2,-7,4,2,-1]),K([-74,45,-83,286,20,-98]),K([5435,-28214,-926,52563,-1644,-14247])])
 
gp: E = ellinit([Polrev([3,-1,-4,0,1,0]),Polrev([-2,3,7,-4,-2,1]),Polrev([4,-2,-7,4,2,-1]),Polrev([-74,45,-83,286,20,-98]),Polrev([5435,-28214,-926,52563,-1644,-14247])], K);
 
magma: E := EllipticCurve([K![3,-1,-4,0,1,0],K![-2,3,7,-4,-2,1],K![4,-2,-7,4,2,-1],K![-74,45,-83,286,20,-98],K![5435,-28214,-926,52563,-1644,-14247]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((2)\) = \((2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 64 \) = \(64\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-128)\) = \((2)^{7}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -4398046511104 \) = \(-64^{7}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{661423578612904638319}{64} a^{5} + \frac{2517381707375973330273}{64} a^{4} - \frac{950355314310097681067}{32} a^{3} - \frac{3717389947572253097155}{128} a^{2} + \frac{4067931975116471451485}{128} a - \frac{366235659528699810345}{64} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(7 a^{5} + 7 a^{4} - 11 a^{3} - 22 a^{2} - 21 a + 27 : 276 a^{5} - 86 a^{4} - 1042 a^{3} + 402 a^{2} + 542 a - 251 : 1\right)$
Height \(1.4230937512180818503724189529310385195\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 1.4230937512180818503724189529310385195 \)
Period: \( 0.60720808826580085585701469292383259518 \)
Tamagawa product: \( 7 \)
Torsion order: \(1\)
Leading coefficient: \( 2.55323 \)
Analytic order of Ш: \( 49 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((2)\) \(64\) \(7\) \(I_{7}\) Split multiplicative \(-1\) \(1\) \(7\) \(7\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(7\) 7B.1.3

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 7.
Its isogeny class 64.1-b consists of curves linked by isogenies of degree 7.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.