Properties

Base field 6.6.485125.1
Label 6.6.485125.1-59.3-a2
Conductor \((59,2 a^{5} - 3 a^{4} - 9 a^{3} + 11 a^{2} + 9 a - 4)\)
Conductor norm \( 59 \)
CM no
base-change no
Q-curve no
Torsion order \( 1 \)
Rank not available

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Base field 6.6.485125.1

Generator \(a\), with minimal polynomial \( x^{6} - 2 x^{5} - 4 x^{4} + 8 x^{3} + 2 x^{2} - 5 x + 1 \); class number \(1\).

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -5, 2, 8, -4, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^6 - 2*x^5 - 4*x^4 + 8*x^3 + 2*x^2 - 5*x + 1)
 
gp (2.8): K = nfinit(a^6 - 2*a^5 - 4*a^4 + 8*a^3 + 2*a^2 - 5*a + 1);
 

Weierstrass equation

\( y^2 + \left(-a^{5} + 2 a^{4} + 4 a^{3} - 6 a^{2} - 2 a + 2\right) x y + \left(-2 a^{5} + 3 a^{4} + 9 a^{3} - 10 a^{2} - 7 a + 3\right) y = x^{3} + \left(a^{5} - a^{4} - 4 a^{3} + 4 a^{2} + a - 2\right) x^{2} + \left(13 a^{5} - 5 a^{4} - 54 a^{3} + 11 a^{2} + 26 a - 8\right) x - 19 a^{5} + 6 a^{4} + 95 a^{3} - 8 a^{2} - 61 a + 14 \)
magma: E := ChangeRing(EllipticCurve([-a^5 + 2*a^4 + 4*a^3 - 6*a^2 - 2*a + 2, a^5 - a^4 - 4*a^3 + 4*a^2 + a - 2, -2*a^5 + 3*a^4 + 9*a^3 - 10*a^2 - 7*a + 3, 13*a^5 - 5*a^4 - 54*a^3 + 11*a^2 + 26*a - 8, -19*a^5 + 6*a^4 + 95*a^3 - 8*a^2 - 61*a + 14]),K);
 
sage: E = EllipticCurve(K, [-a^5 + 2*a^4 + 4*a^3 - 6*a^2 - 2*a + 2, a^5 - a^4 - 4*a^3 + 4*a^2 + a - 2, -2*a^5 + 3*a^4 + 9*a^3 - 10*a^2 - 7*a + 3, 13*a^5 - 5*a^4 - 54*a^3 + 11*a^2 + 26*a - 8, -19*a^5 + 6*a^4 + 95*a^3 - 8*a^2 - 61*a + 14])
 
gp (2.8): E = ellinit([-a^5 + 2*a^4 + 4*a^3 - 6*a^2 - 2*a + 2, a^5 - a^4 - 4*a^3 + 4*a^2 + a - 2, -2*a^5 + 3*a^4 + 9*a^3 - 10*a^2 - 7*a + 3, 13*a^5 - 5*a^4 - 54*a^3 + 11*a^2 + 26*a - 8, -19*a^5 + 6*a^4 + 95*a^3 - 8*a^2 - 61*a + 14],K)
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

\(\mathfrak{N} \) = \((59,2 a^{5} - 3 a^{4} - 9 a^{3} + 11 a^{2} + 9 a - 4)\) = \( \left(a^{5} - a^{4} - 4 a^{3} + 4 a^{2} + a - 2\right) \)
magma: Conductor(E);
 
sage: E.conductor()
 
\(N(\mathfrak{N}) \) = \( 59 \) = \( 59 \)
magma: Norm(Conductor(E));
 
sage: E.conductor().norm()
 
\(\mathfrak{D}\) = \((205379,a^{5} - a^{4} - 5 a^{3} + 4 a^{2} + 5 a + 115199,-a^{5} + 2 a^{4} + 4 a^{3} - 7 a^{2} - 3 a + 152418,a^{5} - a^{4} - 4 a^{3} + 3 a^{2} + 2 a + 38471,a + 65948,-a^{5} + a^{4} + 5 a^{3} - 3 a^{2} - 5 a + 57180)\) = \( \left(a^{5} - a^{4} - 4 a^{3} + 4 a^{2} + a - 2\right)^{3} \)
magma: Discriminant(E);
 
sage: E.discriminant()
 
gp (2.8): E.disc
 
\(N(\mathfrak{D})\) = \( 205379 \) = \( 59^{3} \)
magma: Norm(Discriminant(E));
 
sage: E.discriminant().norm()
 
gp (2.8): norm(E.disc)
 
\(j\) = \( \frac{405899147170}{205379} a^{5} - \frac{12701658626728}{205379} a^{4} + \frac{44961131124416}{205379} a^{3} - \frac{16357875028693}{205379} a^{2} - \frac{50805246375551}{205379} a + \frac{12754961594912}{205379} \)
magma: jInvariant(E);
 
sage: E.j_invariant()
 
gp (2.8): E.j
 
\( \text{End} (E) \) = \(\Z\)   (no Complex Multiplication )
magma: HasComplexMultiplication(E);
 
sage: E.has_cm(), E.cm_discriminant()
 
\( \text{ST} (E) \) = $\mathrm{SU}(2)$

Mordell-Weil group

Rank not available.
magma: Rank(E);
 
sage: E.rank()
 
magma: Generators(E); // includes torsion
 
sage: E.gens()
 

Regulator: not available

magma: Regulator(Generators(E));
 
sage: E.regulator_of_points(E.gens())
 

Torsion subgroup

Structure: Trivial
magma: TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[2]
 
magma: Order(TorsionSubgroup(E));
 
sage: E.torsion_order()
 
gp (2.8): elltors(E)[1]
 

Local data at primes of bad reduction

magma: LocalInformation(E);
 
sage: E.local_data()
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(a^{5} - a^{4} - 4 a^{3} + 4 a^{2} + a - 2\right) \) \(59\) \(1\) \(I_{3}\) Non-split multiplicative \(1\) \(1\) \(3\) \(3\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p \) except those listed.

prime Image of Galois Representation
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 59.3-a consists of curves linked by isogenies of degree 3.

Base change

This curve is not the base-change of an elliptic curve defined over \(\Q\). It is not a \(\Q\)-curve.