Properties

Label 6.6.485125.1-59.3-a1
Base field 6.6.485125.1
Conductor norm \( 59 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 6.6.485125.1

Generator \(a\), with minimal polynomial \( x^{6} - 2 x^{5} - 4 x^{4} + 8 x^{3} + 2 x^{2} - 5 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -5, 2, 8, -4, -2, 1]))
 
gp: K = nfinit(Polrev([1, -5, 2, 8, -4, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -5, 2, 8, -4, -2, 1]);
 

Weierstrass equation

\({y}^2+\left(-2a^{5}+3a^{4}+9a^{3}-10a^{2}-8a+3\right){x}{y}+\left(-a^{5}+2a^{4}+4a^{3}-6a^{2}-3a+1\right){y}={x}^{3}+\left(-3a^{5}+4a^{4}+13a^{3}-13a^{2}-10a+5\right){x}^{2}+\left(-11a^{5}+3a^{4}+46a^{3}-15a^{2}-27a+7\right){x}+6a^{5}-4a^{4}+8a^{3}+8a^{2}-15a+2\)
sage: E = EllipticCurve([K([3,-8,-10,9,3,-2]),K([5,-10,-13,13,4,-3]),K([1,-3,-6,4,2,-1]),K([7,-27,-15,46,3,-11]),K([2,-15,8,8,-4,6])])
 
gp: E = ellinit([Polrev([3,-8,-10,9,3,-2]),Polrev([5,-10,-13,13,4,-3]),Polrev([1,-3,-6,4,2,-1]),Polrev([7,-27,-15,46,3,-11]),Polrev([2,-15,8,8,-4,6])], K);
 
magma: E := EllipticCurve([K![3,-8,-10,9,3,-2],K![5,-10,-13,13,4,-3],K![1,-3,-6,4,2,-1],K![7,-27,-15,46,3,-11],K![2,-15,8,8,-4,6]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^5-a^4-4a^3+4a^2+a-2)\) = \((a^5-a^4-4a^3+4a^2+a-2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 59 \) = \(59\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((a^5-a^4-4a^3+4a^2+a-2)\) = \((a^5-a^4-4a^3+4a^2+a-2)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 59 \) = \(59\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{4359301206760773428367717}{59} a^{5} + \frac{537385250403166009110948}{59} a^{4} - \frac{16296189097092649182107067}{59} a^{3} + \frac{273147181618590226616345}{59} a^{2} + \frac{9298568519001795165747303}{59} a - \frac{2053104185232518599834604}{59} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 1217.3893860541628883300812885238104207 \)
Tamagawa product: \( 1 \)
Torsion order: \(1\)
Leading coefficient: \( 1.74784 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^5-a^4-4a^3+4a^2+a-2)\) \(59\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 59.3-a consists of curves linked by isogenies of degree 3.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.