Properties

Base field 6.6.485125.1
Label 6.6.485125.1-59.2-a1
Conductor \((59,a^{5} - a^{4} - 4 a^{3} + 3 a^{2} + 3 a - 3)\)
Conductor norm \( 59 \)
CM no
base-change no
Q-curve no
Torsion order \( 1 \)
Rank not available

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Base field 6.6.485125.1

Generator \(a\), with minimal polynomial \( x^{6} - 2 x^{5} - 4 x^{4} + 8 x^{3} + 2 x^{2} - 5 x + 1 \); class number \(1\).

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -5, 2, 8, -4, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^6 - 2*x^5 - 4*x^4 + 8*x^3 + 2*x^2 - 5*x + 1)
 
gp (2.8): K = nfinit(a^6 - 2*a^5 - 4*a^4 + 8*a^3 + 2*a^2 - 5*a + 1);
 

Weierstrass equation

\( y^2 + \left(a^{4} - a^{3} - 3 a^{2} + 3 a + 2\right) x y + \left(a^{5} - a^{4} - 5 a^{3} + 4 a^{2} + 5 a - 2\right) y = x^{3} + \left(-2 a^{5} + 3 a^{4} + 8 a^{3} - 11 a^{2} - 6 a + 7\right) x^{2} + \left(-6 a^{5} + 11 a^{4} + 24 a^{3} - 39 a^{2} - 19 a + 22\right) x - 4 a^{5} + 8 a^{4} + 15 a^{3} - 27 a^{2} - 12 a + 15 \)
magma: E := ChangeRing(EllipticCurve([a^4 - a^3 - 3*a^2 + 3*a + 2, -2*a^5 + 3*a^4 + 8*a^3 - 11*a^2 - 6*a + 7, a^5 - a^4 - 5*a^3 + 4*a^2 + 5*a - 2, -6*a^5 + 11*a^4 + 24*a^3 - 39*a^2 - 19*a + 22, -4*a^5 + 8*a^4 + 15*a^3 - 27*a^2 - 12*a + 15]),K);
 
sage: E = EllipticCurve(K, [a^4 - a^3 - 3*a^2 + 3*a + 2, -2*a^5 + 3*a^4 + 8*a^3 - 11*a^2 - 6*a + 7, a^5 - a^4 - 5*a^3 + 4*a^2 + 5*a - 2, -6*a^5 + 11*a^4 + 24*a^3 - 39*a^2 - 19*a + 22, -4*a^5 + 8*a^4 + 15*a^3 - 27*a^2 - 12*a + 15])
 
gp (2.8): E = ellinit([a^4 - a^3 - 3*a^2 + 3*a + 2, -2*a^5 + 3*a^4 + 8*a^3 - 11*a^2 - 6*a + 7, a^5 - a^4 - 5*a^3 + 4*a^2 + 5*a - 2, -6*a^5 + 11*a^4 + 24*a^3 - 39*a^2 - 19*a + 22, -4*a^5 + 8*a^4 + 15*a^3 - 27*a^2 - 12*a + 15],K)
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

\(\mathfrak{N} \) = \((59,a^{5} - a^{4} - 4 a^{3} + 3 a^{2} + 3 a - 3)\) = \( \left(-a^{4} + a^{3} + 3 a^{2} - 3 a - 1\right) \)
magma: Conductor(E);
 
sage: E.conductor()
 
\(N(\mathfrak{N}) \) = \( 59 \) = \( 59 \)
magma: Norm(Conductor(E));
 
sage: E.conductor().norm()
 
\(\mathfrak{D}\) = \((59,a^{5} - a^{4} - 5 a^{3} + 4 a^{2} + 5 a + 31,-a^{5} + 2 a^{4} + 4 a^{3} - 7 a^{2} - 3 a + 20,a^{5} - a^{4} - 4 a^{3} + 3 a^{2} + 2 a + 47,a + 9,-a^{5} + a^{4} + 5 a^{3} - 3 a^{2} - 5 a + 6)\) = \( \left(-a^{4} + a^{3} + 3 a^{2} - 3 a - 1\right) \)
magma: Discriminant(E);
 
sage: E.discriminant()
 
gp (2.8): E.disc
 
\(N(\mathfrak{D})\) = \( 59 \) = \( 59 \)
magma: Norm(Discriminant(E));
 
sage: E.discriminant().norm()
 
gp (2.8): norm(E.disc)
 
\(j\) = \( \frac{11048}{59} a^{5} - \frac{11375}{59} a^{4} - \frac{30730}{59} a^{3} + \frac{29362}{59} a^{2} - \frac{55427}{59} a + \frac{52669}{59} \)
magma: jInvariant(E);
 
sage: E.j_invariant()
 
gp (2.8): E.j
 
\( \text{End} (E) \) = \(\Z\)   (no Complex Multiplication )
magma: HasComplexMultiplication(E);
 
sage: E.has_cm(), E.cm_discriminant()
 
\( \text{ST} (E) \) = $\mathrm{SU}(2)$

Mordell-Weil group

Rank not available.
magma: Rank(E);
 
sage: E.rank()
 
magma: Generators(E); // includes torsion
 
sage: E.gens()
 

Regulator: not available

magma: Regulator(Generators(E));
 
sage: E.regulator_of_points(E.gens())
 

Torsion subgroup

Structure: Trivial
magma: TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[2]
 
magma: Order(TorsionSubgroup(E));
 
sage: E.torsion_order()
 
gp (2.8): elltors(E)[1]
 

Local data at primes of bad reduction

magma: LocalInformation(E);
 
sage: E.local_data()
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(-a^{4} + a^{3} + 3 a^{2} - 3 a - 1\right) \) \(59\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p \) .

Isogenies and isogeny class

This curve has no rational isogenies. Its isogeny class 59.2-a consists of this curve only.

Base change

This curve is not the base-change of an elliptic curve defined over \(\Q\). It is not a \(\Q\)-curve.