Base field 6.6.485125.1
Generator \(a\), with minimal polynomial \( x^{6} - 2 x^{5} - 4 x^{4} + 8 x^{3} + 2 x^{2} - 5 x + 1 \); class number \(1\).
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -5, 2, 8, -4, -2, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^6 - 2*x^5 - 4*x^4 + 8*x^3 + 2*x^2 - 5*x + 1)
gp (2.8): K = nfinit(a^6 - 2*a^5 - 4*a^4 + 8*a^3 + 2*a^2 - 5*a + 1);
Weierstrass equation
magma: E := ChangeRing(EllipticCurve([a^4 - 4*a^2 - a + 2, a^4 - 4*a^2 + 2, -2*a^5 + 3*a^4 + 9*a^3 - 10*a^2 - 7*a + 3, 1286*a^5 - 1768*a^4 - 6218*a^3 + 6370*a^2 + 6394*a - 2350, -41543*a^5 + 53994*a^4 + 204324*a^3 - 189619*a^2 - 217635*a + 56419]),K);
sage: E = EllipticCurve(K, [a^4 - 4*a^2 - a + 2, a^4 - 4*a^2 + 2, -2*a^5 + 3*a^4 + 9*a^3 - 10*a^2 - 7*a + 3, 1286*a^5 - 1768*a^4 - 6218*a^3 + 6370*a^2 + 6394*a - 2350, -41543*a^5 + 53994*a^4 + 204324*a^3 - 189619*a^2 - 217635*a + 56419])
gp (2.8): E = ellinit([a^4 - 4*a^2 - a + 2, a^4 - 4*a^2 + 2, -2*a^5 + 3*a^4 + 9*a^3 - 10*a^2 - 7*a + 3, 1286*a^5 - 1768*a^4 - 6218*a^3 + 6370*a^2 + 6394*a - 2350, -41543*a^5 + 53994*a^4 + 204324*a^3 - 189619*a^2 - 217635*a + 56419],K)
This is a global minimal model.
sage: E.is_global_minimal_model()
Invariants
| \(\mathfrak{N} \) | = | \((7,-2 a^{5} + 3 a^{4} + 10 a^{3} - 12 a^{2} - 11 a + 6)\) | = | \( \left(-2 a^{5} + 3 a^{4} + 10 a^{3} - 12 a^{2} - 11 a + 6\right) \) |
| magma: Conductor(E);
sage: E.conductor()
| ||||
| \(N(\mathfrak{N}) \) | = | \( 49 \) | = | \( 49 \) |
| magma: Norm(Conductor(E));
sage: E.conductor().norm()
| ||||
| \(\mathfrak{D}\) | = | \((4747561509943,4747561509943 a^{5} - 4747561509943 a^{4} - 23737807549715 a^{3} + 18990246039772 a^{2} + 23737807549715 a - 9495123019886,966462779485 a^{5} - 966462779484 a^{4} - 4832313897426 a^{3} + 3865851117937 a^{2} + 4832313897427 a + 812730634258,2923202918893 a^{5} - 2923202918893 a^{4} - 14616014594464 a^{3} + 11692811675571 a^{2} + 14616014594462 a - 4423509729161,4346099027516 a^{5} - 4346099027516 a^{4} - 21730495137580 a^{3} + 17384396110064 a^{2} + 21730495137581 a - 5768995136140,3310656490286 a^{5} - 3310656490286 a^{4} - 16553282451430 a^{3} + 13242625961145 a^{2} + 16553282451430 a - 2731647282195)\) | = | \( \left(-2 a^{5} + 3 a^{4} + 10 a^{3} - 12 a^{2} - 11 a + 6\right)^{15} \) |
| magma: Discriminant(E);
sage: E.discriminant()
gp (2.8): E.disc
| ||||
| \(N(\mathfrak{D})\) | = | \( 22539340290692258087863249 \) | = | \( 49^{15} \) |
| magma: Norm(Discriminant(E));
sage: E.discriminant().norm()
gp (2.8): norm(E.disc)
| ||||
| \(j\) | = | \( -\frac{5071828648518898928776706}{4747561509943} a^{5} + \frac{1594371267260221471874998}{4747561509943} a^{4} + \frac{22976097914409962241364493}{4747561509943} a^{3} - \frac{1845254644248882604992608}{4747561509943} a^{2} - \frac{13259741923351079752225853}{4747561509943} a + \frac{3007050597491418428537932}{4747561509943} \) | ||
| magma: jInvariant(E);
sage: E.j_invariant()
gp (2.8): E.j
| ||||
| \( \text{End} (E) \) | = | \(\Z\) | (no Complex Multiplication ) | |
| magma: HasComplexMultiplication(E);
sage: E.has_cm(), E.cm_discriminant()
| ||||
| \( \text{ST} (E) \) | = | $\mathrm{SU}(2)$ | ||
Mordell-Weil group
Rank not available.magma: Rank(E);
sage: E.rank()
magma: Generators(E); // includes torsion
sage: E.gens()
Regulator: not available
magma: Regulator(Generators(E));
sage: E.regulator_of_points(E.gens())
Torsion subgroup
| Structure: | Trivial |
|---|---|
| magma: TorsionSubgroup(E);
sage: E.torsion_subgroup().gens()
gp (2.8): elltors(E)[2]
| |
| magma: Order(TorsionSubgroup(E));
sage: E.torsion_order()
gp (2.8): elltors(E)[1]
| |
Local data at primes of bad reduction
magma: LocalInformation(E);
sage: E.local_data()
| prime | Norm | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(\mathfrak{N}\)) | ord(\(\mathfrak{D}\)) | ord\((j)_{-}\) |
|---|---|---|---|---|---|---|---|---|
| \( \left(-2 a^{5} + 3 a^{4} + 10 a^{3} - 12 a^{2} - 11 a + 6\right) \) | \(49\) | \(1\) | \(I_{15}\) | Non-split multiplicative | \(1\) | \(1\) | \(15\) | \(15\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p \) except those listed.
| prime | Image of Galois Representation |
|---|---|
| \(3\) | 3B |
| \(5\) | 5B.1.4[2] |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
3, 5 and 15.
Its isogeny class
49.1-e
consists of curves linked by isogenies of
degrees dividing 15.