Properties

Label 6.6.485125.1-49.1-c2
Base field 6.6.485125.1
Conductor norm \( 49 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 6.6.485125.1

Generator \(a\), with minimal polynomial \( x^{6} - 2 x^{5} - 4 x^{4} + 8 x^{3} + 2 x^{2} - 5 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -5, 2, 8, -4, -2, 1]))
 
gp: K = nfinit(Polrev([1, -5, 2, 8, -4, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -5, 2, 8, -4, -2, 1]);
 

Weierstrass equation

\({y}^2+\left(-2a^{5}+3a^{4}+9a^{3}-10a^{2}-7a+3\right){x}{y}+\left(a^{4}-4a^{2}-a+2\right){y}={x}^{3}+\left(-a^{5}+a^{4}+5a^{3}-3a^{2}-5a+1\right){x}^{2}+\left(13a^{5}-4a^{4}-57a^{3}+5a^{2}+28a-11\right){x}+23a^{5}-35a^{4}-114a^{3}+128a^{2}+130a-40\)
sage: E = EllipticCurve([K([3,-7,-10,9,3,-2]),K([1,-5,-3,5,1,-1]),K([2,-1,-4,0,1,0]),K([-11,28,5,-57,-4,13]),K([-40,130,128,-114,-35,23])])
 
gp: E = ellinit([Polrev([3,-7,-10,9,3,-2]),Polrev([1,-5,-3,5,1,-1]),Polrev([2,-1,-4,0,1,0]),Polrev([-11,28,5,-57,-4,13]),Polrev([-40,130,128,-114,-35,23])], K);
 
magma: E := EllipticCurve([K![3,-7,-10,9,3,-2],K![1,-5,-3,5,1,-1],K![2,-1,-4,0,1,0],K![-11,28,5,-57,-4,13],K![-40,130,128,-114,-35,23]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-2a^5+3a^4+10a^3-12a^2-11a+6)\) = \((-2a^5+3a^4+10a^3-12a^2-11a+6)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 49 \) = \(49\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((207a^5-225a^4-894a^3+1170a^2+393a-1387)\) = \((-2a^5+3a^4+10a^3-12a^2-11a+6)^{10}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -79792266297612001 \) = \(-49^{10}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{10036119836964947}{282475249} a^{5} - \frac{29399419342483055}{282475249} a^{4} - \frac{12822844127834407}{282475249} a^{3} + \frac{92208680747113198}{282475249} a^{2} - \frac{65621823291227116}{282475249} a + \frac{10801128327256298}{282475249} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-2 a^{5} + \frac{5}{2} a^{4} + \frac{37}{4} a^{3} - \frac{17}{2} a^{2} - \frac{35}{4} a + 2 : -\frac{23}{8} a^{5} + 4 a^{4} + \frac{111}{8} a^{3} - \frac{55}{4} a^{2} - \frac{109}{8} a + \frac{27}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 2310.7349364208047835024738824872300473 \)
Tamagawa product: \( 2 \)
Torsion order: \(2\)
Leading coefficient: \( 1.65880 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-2a^5+3a^4+10a^3-12a^2-11a+6)\) \(49\) \(2\) \(I_{10}\) Non-split multiplicative \(1\) \(1\) \(10\) \(10\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 49.1-c consists of curves linked by isogenies of degree 2.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.