Base field 6.6.485125.1
Generator \(a\), with minimal polynomial \( x^{6} - 2 x^{5} - 4 x^{4} + 8 x^{3} + 2 x^{2} - 5 x + 1 \); class number \(1\).
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -5, 2, 8, -4, -2, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^6 - 2*x^5 - 4*x^4 + 8*x^3 + 2*x^2 - 5*x + 1)
gp (2.8): K = nfinit(a^6 - 2*a^5 - 4*a^4 + 8*a^3 + 2*a^2 - 5*a + 1);
Weierstrass equation
magma: E := ChangeRing(EllipticCurve([-2*a^5 + 3*a^4 + 9*a^3 - 10*a^2 - 7*a + 3, -a^5 + a^4 + 5*a^3 - 3*a^2 - 5*a + 1, a^4 - 4*a^2 - a + 2, 13*a^5 - 4*a^4 - 57*a^3 + 5*a^2 + 28*a - 11, 23*a^5 - 35*a^4 - 114*a^3 + 128*a^2 + 130*a - 40]),K);
sage: E = EllipticCurve(K, [-2*a^5 + 3*a^4 + 9*a^3 - 10*a^2 - 7*a + 3, -a^5 + a^4 + 5*a^3 - 3*a^2 - 5*a + 1, a^4 - 4*a^2 - a + 2, 13*a^5 - 4*a^4 - 57*a^3 + 5*a^2 + 28*a - 11, 23*a^5 - 35*a^4 - 114*a^3 + 128*a^2 + 130*a - 40])
gp (2.8): E = ellinit([-2*a^5 + 3*a^4 + 9*a^3 - 10*a^2 - 7*a + 3, -a^5 + a^4 + 5*a^3 - 3*a^2 - 5*a + 1, a^4 - 4*a^2 - a + 2, 13*a^5 - 4*a^4 - 57*a^3 + 5*a^2 + 28*a - 11, 23*a^5 - 35*a^4 - 114*a^3 + 128*a^2 + 130*a - 40],K)
This is a global minimal model.
sage: E.is_global_minimal_model()
Invariants
| \(\mathfrak{N} \) | = | \((7,-2 a^{5} + 3 a^{4} + 10 a^{3} - 12 a^{2} - 11 a + 6)\) | = | \( \left(-2 a^{5} + 3 a^{4} + 10 a^{3} - 12 a^{2} - 11 a + 6\right) \) |
| magma: Conductor(E);
sage: E.conductor()
| ||||
| \(N(\mathfrak{N}) \) | = | \( 49 \) | = | \( 49 \) |
| magma: Norm(Conductor(E));
sage: E.conductor().norm()
| ||||
| \(\mathfrak{D}\) | = | \((282475249,282475249 a^{5} - 282475249 a^{4} - 1412376245 a^{3} + 1129900996 a^{2} + 1412376245 a - 564950498,114952656 a^{5} - 114952655 a^{4} - 574763281 a^{3} + 459810621 a^{2} + 574763282 a + 49342885,149042241 a^{5} - 149042241 a^{4} - 745211204 a^{3} + 596168963 a^{2} + 745211202 a - 229805070,217321651 a^{5} - 217321651 a^{4} - 1086608255 a^{3} + 869286604 a^{2} + 1086608256 a - 285601062,46572006 a^{5} - 46572006 a^{4} - 232860030 a^{3} + 186288025 a^{2} + 232860030 a + 170850884)\) | = | \( \left(-2 a^{5} + 3 a^{4} + 10 a^{3} - 12 a^{2} - 11 a + 6\right)^{10} \) |
| magma: Discriminant(E);
sage: E.discriminant()
gp (2.8): E.disc
| ||||
| \(N(\mathfrak{D})\) | = | \( 79792266297612001 \) | = | \( 49^{10} \) |
| magma: Norm(Discriminant(E));
sage: E.discriminant().norm()
gp (2.8): norm(E.disc)
| ||||
| \(j\) | = | \( \frac{10036119836964947}{282475249} a^{5} - \frac{29399419342483055}{282475249} a^{4} - \frac{12822844127834407}{282475249} a^{3} + \frac{92208680747113198}{282475249} a^{2} - \frac{65621823291227116}{282475249} a + \frac{10801128327256298}{282475249} \) | ||
| magma: jInvariant(E);
sage: E.j_invariant()
gp (2.8): E.j
| ||||
| \( \text{End} (E) \) | = | \(\Z\) | (no Complex Multiplication ) | |
| magma: HasComplexMultiplication(E);
sage: E.has_cm(), E.cm_discriminant()
| ||||
| \( \text{ST} (E) \) | = | $\mathrm{SU}(2)$ | ||
Mordell-Weil group
Rank not available.magma: Rank(E);
sage: E.rank()
magma: Generators(E); // includes torsion
sage: E.gens()
Regulator: not available
magma: Regulator(Generators(E));
sage: E.regulator_of_points(E.gens())
Torsion subgroup
| Structure: | \(\Z/2\Z\) |
|---|---|
| magma: TorsionSubgroup(E);
sage: E.torsion_subgroup().gens()
gp (2.8): elltors(E)[2]
| |
| magma: Order(TorsionSubgroup(E));
sage: E.torsion_order()
gp (2.8): elltors(E)[1]
| |
| Generator: | $\left(-2 a^{5} + \frac{5}{2} a^{4} + \frac{37}{4} a^{3} - \frac{17}{2} a^{2} - \frac{35}{4} a + 2 : -\frac{23}{8} a^{5} + 4 a^{4} + \frac{111}{8} a^{3} - \frac{55}{4} a^{2} - \frac{109}{8} a + \frac{27}{8} : 1\right)$ |
| magma: [f(P): P in Generators(T)] where T,f:=TorsionSubgroup(E);
sage: E.torsion_subgroup().gens()
gp (2.8): elltors(E)[3]
| |
Local data at primes of bad reduction
magma: LocalInformation(E);
sage: E.local_data()
| prime | Norm | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(\mathfrak{N}\)) | ord(\(\mathfrak{D}\)) | ord\((j)_{-}\) |
|---|---|---|---|---|---|---|---|---|
| \( \left(-2 a^{5} + 3 a^{4} + 10 a^{3} - 12 a^{2} - 11 a + 6\right) \) | \(49\) | \(2\) | \(I_{10}\) | Non-split multiplicative | \(1\) | \(1\) | \(10\) | \(10\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p \) except those listed.
| prime | Image of Galois Representation |
|---|---|
| \(2\) | 2B |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2.
Its isogeny class
49.1-c
consists of curves linked by isogenies of
degree 2.