Properties

Base field 6.6.485125.1
Label 6.6.485125.1-49.1-c2
Conductor \((7,-2 a^{5} + 3 a^{4} + 10 a^{3} - 12 a^{2} - 11 a + 6)\)
Conductor norm \( 49 \)
CM no
base-change no
Q-curve no
Torsion order \( 2 \)
Rank not available

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Base field 6.6.485125.1

Generator \(a\), with minimal polynomial \( x^{6} - 2 x^{5} - 4 x^{4} + 8 x^{3} + 2 x^{2} - 5 x + 1 \); class number \(1\).

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -5, 2, 8, -4, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^6 - 2*x^5 - 4*x^4 + 8*x^3 + 2*x^2 - 5*x + 1)
 
gp (2.8): K = nfinit(a^6 - 2*a^5 - 4*a^4 + 8*a^3 + 2*a^2 - 5*a + 1);
 

Weierstrass equation

\( y^2 + \left(-2 a^{5} + 3 a^{4} + 9 a^{3} - 10 a^{2} - 7 a + 3\right) x y + \left(a^{4} - 4 a^{2} - a + 2\right) y = x^{3} + \left(-a^{5} + a^{4} + 5 a^{3} - 3 a^{2} - 5 a + 1\right) x^{2} + \left(13 a^{5} - 4 a^{4} - 57 a^{3} + 5 a^{2} + 28 a - 11\right) x + 23 a^{5} - 35 a^{4} - 114 a^{3} + 128 a^{2} + 130 a - 40 \)
magma: E := ChangeRing(EllipticCurve([-2*a^5 + 3*a^4 + 9*a^3 - 10*a^2 - 7*a + 3, -a^5 + a^4 + 5*a^3 - 3*a^2 - 5*a + 1, a^4 - 4*a^2 - a + 2, 13*a^5 - 4*a^4 - 57*a^3 + 5*a^2 + 28*a - 11, 23*a^5 - 35*a^4 - 114*a^3 + 128*a^2 + 130*a - 40]),K);
 
sage: E = EllipticCurve(K, [-2*a^5 + 3*a^4 + 9*a^3 - 10*a^2 - 7*a + 3, -a^5 + a^4 + 5*a^3 - 3*a^2 - 5*a + 1, a^4 - 4*a^2 - a + 2, 13*a^5 - 4*a^4 - 57*a^3 + 5*a^2 + 28*a - 11, 23*a^5 - 35*a^4 - 114*a^3 + 128*a^2 + 130*a - 40])
 
gp (2.8): E = ellinit([-2*a^5 + 3*a^4 + 9*a^3 - 10*a^2 - 7*a + 3, -a^5 + a^4 + 5*a^3 - 3*a^2 - 5*a + 1, a^4 - 4*a^2 - a + 2, 13*a^5 - 4*a^4 - 57*a^3 + 5*a^2 + 28*a - 11, 23*a^5 - 35*a^4 - 114*a^3 + 128*a^2 + 130*a - 40],K)
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

\(\mathfrak{N} \) = \((7,-2 a^{5} + 3 a^{4} + 10 a^{3} - 12 a^{2} - 11 a + 6)\) = \( \left(-2 a^{5} + 3 a^{4} + 10 a^{3} - 12 a^{2} - 11 a + 6\right) \)
magma: Conductor(E);
 
sage: E.conductor()
 
\(N(\mathfrak{N}) \) = \( 49 \) = \( 49 \)
magma: Norm(Conductor(E));
 
sage: E.conductor().norm()
 
\(\mathfrak{D}\) = \((282475249,282475249 a^{5} - 282475249 a^{4} - 1412376245 a^{3} + 1129900996 a^{2} + 1412376245 a - 564950498,114952656 a^{5} - 114952655 a^{4} - 574763281 a^{3} + 459810621 a^{2} + 574763282 a + 49342885,149042241 a^{5} - 149042241 a^{4} - 745211204 a^{3} + 596168963 a^{2} + 745211202 a - 229805070,217321651 a^{5} - 217321651 a^{4} - 1086608255 a^{3} + 869286604 a^{2} + 1086608256 a - 285601062,46572006 a^{5} - 46572006 a^{4} - 232860030 a^{3} + 186288025 a^{2} + 232860030 a + 170850884)\) = \( \left(-2 a^{5} + 3 a^{4} + 10 a^{3} - 12 a^{2} - 11 a + 6\right)^{10} \)
magma: Discriminant(E);
 
sage: E.discriminant()
 
gp (2.8): E.disc
 
\(N(\mathfrak{D})\) = \( 79792266297612001 \) = \( 49^{10} \)
magma: Norm(Discriminant(E));
 
sage: E.discriminant().norm()
 
gp (2.8): norm(E.disc)
 
\(j\) = \( \frac{10036119836964947}{282475249} a^{5} - \frac{29399419342483055}{282475249} a^{4} - \frac{12822844127834407}{282475249} a^{3} + \frac{92208680747113198}{282475249} a^{2} - \frac{65621823291227116}{282475249} a + \frac{10801128327256298}{282475249} \)
magma: jInvariant(E);
 
sage: E.j_invariant()
 
gp (2.8): E.j
 
\( \text{End} (E) \) = \(\Z\)   (no Complex Multiplication )
magma: HasComplexMultiplication(E);
 
sage: E.has_cm(), E.cm_discriminant()
 
\( \text{ST} (E) \) = $\mathrm{SU}(2)$

Mordell-Weil group

Rank not available.
magma: Rank(E);
 
sage: E.rank()
 
magma: Generators(E); // includes torsion
 
sage: E.gens()
 

Regulator: not available

magma: Regulator(Generators(E));
 
sage: E.regulator_of_points(E.gens())
 

Torsion subgroup

Structure: \(\Z/2\Z\)
magma: TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[2]
 
magma: Order(TorsionSubgroup(E));
 
sage: E.torsion_order()
 
gp (2.8): elltors(E)[1]
 
Generator: $\left(-2 a^{5} + \frac{5}{2} a^{4} + \frac{37}{4} a^{3} - \frac{17}{2} a^{2} - \frac{35}{4} a + 2 : -\frac{23}{8} a^{5} + 4 a^{4} + \frac{111}{8} a^{3} - \frac{55}{4} a^{2} - \frac{109}{8} a + \frac{27}{8} : 1\right)$
magma: [f(P): P in Generators(T)] where T,f:=TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[3]
 

Local data at primes of bad reduction

magma: LocalInformation(E);
 
sage: E.local_data()
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(-2 a^{5} + 3 a^{4} + 10 a^{3} - 12 a^{2} - 11 a + 6\right) \) \(49\) \(2\) \(I_{10}\) Non-split multiplicative \(1\) \(1\) \(10\) \(10\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 49.1-c consists of curves linked by isogenies of degree 2.

Base change

This curve is not the base-change of an elliptic curve defined over \(\Q\). It is not a \(\Q\)-curve.