Properties

Base field 6.6.485125.1
Label 6.6.485125.1-49.1-b2
Conductor \((7,-2 a^{5} + 3 a^{4} + 10 a^{3} - 12 a^{2} - 11 a + 6)\)
Conductor norm \( 49 \)
CM no
base-change no
Q-curve no
Torsion order \( 1 \)
Rank not available

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Base field 6.6.485125.1

Generator \(a\), with minimal polynomial \( x^{6} - 2 x^{5} - 4 x^{4} + 8 x^{3} + 2 x^{2} - 5 x + 1 \); class number \(1\).

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -5, 2, 8, -4, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^6 - 2*x^5 - 4*x^4 + 8*x^3 + 2*x^2 - 5*x + 1)
 
gp (2.8): K = nfinit(a^6 - 2*a^5 - 4*a^4 + 8*a^3 + 2*a^2 - 5*a + 1);
 

Weierstrass equation

\( y^2 + \left(a^{4} - 3 a^{2} - a + 1\right) x y + \left(a^{5} - 5 a^{3} + 4 a\right) y = x^{3} + \left(-a^{5} + 2 a^{4} + 3 a^{3} - 7 a^{2} + a + 4\right) x^{2} + \left(a^{5} - 5 a^{4} - 6 a^{3} + 16 a^{2} + 3 a - 5\right) x - 17 a^{5} - 12 a^{4} + 59 a^{3} + 37 a^{2} - 26 a - 15 \)
magma: E := ChangeRing(EllipticCurve([a^4 - 3*a^2 - a + 1, -a^5 + 2*a^4 + 3*a^3 - 7*a^2 + a + 4, a^5 - 5*a^3 + 4*a, a^5 - 5*a^4 - 6*a^3 + 16*a^2 + 3*a - 5, -17*a^5 - 12*a^4 + 59*a^3 + 37*a^2 - 26*a - 15]),K);
 
sage: E = EllipticCurve(K, [a^4 - 3*a^2 - a + 1, -a^5 + 2*a^4 + 3*a^3 - 7*a^2 + a + 4, a^5 - 5*a^3 + 4*a, a^5 - 5*a^4 - 6*a^3 + 16*a^2 + 3*a - 5, -17*a^5 - 12*a^4 + 59*a^3 + 37*a^2 - 26*a - 15])
 
gp (2.8): E = ellinit([a^4 - 3*a^2 - a + 1, -a^5 + 2*a^4 + 3*a^3 - 7*a^2 + a + 4, a^5 - 5*a^3 + 4*a, a^5 - 5*a^4 - 6*a^3 + 16*a^2 + 3*a - 5, -17*a^5 - 12*a^4 + 59*a^3 + 37*a^2 - 26*a - 15],K)
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

\(\mathfrak{N} \) = \((7,-2 a^{5} + 3 a^{4} + 10 a^{3} - 12 a^{2} - 11 a + 6)\) = \( \left(-2 a^{5} + 3 a^{4} + 10 a^{3} - 12 a^{2} - 11 a + 6\right) \)
magma: Conductor(E);
 
sage: E.conductor()
 
\(N(\mathfrak{N}) \) = \( 49 \) = \( 49 \)
magma: Norm(Conductor(E));
 
sage: E.conductor().norm()
 
\(\mathfrak{D}\) = \((7,7 a^{5} - 7 a^{4} - 35 a^{3} + 28 a^{2} + 35 a - 14,a^{4} - a^{3} - 3 a^{2} + 2 a + 4,5 a^{5} - 5 a^{4} - 24 a^{3} + 19 a^{2} + 22 a - 5,a^{5} - a^{4} - 5 a^{3} + 4 a^{2} + 6 a + 2,5 a^{5} - 5 a^{4} - 25 a^{3} + 21 a^{2} + 25 a - 6)\) = \( \left(-2 a^{5} + 3 a^{4} + 10 a^{3} - 12 a^{2} - 11 a + 6\right) \)
magma: Discriminant(E);
 
sage: E.discriminant()
 
gp (2.8): E.disc
 
\(N(\mathfrak{D})\) = \( 49 \) = \( 49 \)
magma: Norm(Discriminant(E));
 
sage: E.discriminant().norm()
 
gp (2.8): norm(E.disc)
 
\(j\) = \( -\frac{33421578235106}{7} a^{5} + \frac{44025168524177}{7} a^{4} + \frac{163743713309159}{7} a^{3} - \frac{155579519258196}{7} a^{2} - \frac{173062304078080}{7} a + \frac{48952686264565}{7} \)
magma: jInvariant(E);
 
sage: E.j_invariant()
 
gp (2.8): E.j
 
\( \text{End} (E) \) = \(\Z\)   (no Complex Multiplication )
magma: HasComplexMultiplication(E);
 
sage: E.has_cm(), E.cm_discriminant()
 
\( \text{ST} (E) \) = $\mathrm{SU}(2)$

Mordell-Weil group

Rank not available.
magma: Rank(E);
 
sage: E.rank()
 
magma: Generators(E); // includes torsion
 
sage: E.gens()
 

Regulator: not available

magma: Regulator(Generators(E));
 
sage: E.regulator_of_points(E.gens())
 

Torsion subgroup

Structure: Trivial
magma: TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[2]
 
magma: Order(TorsionSubgroup(E));
 
sage: E.torsion_order()
 
gp (2.8): elltors(E)[1]
 

Local data at primes of bad reduction

magma: LocalInformation(E);
 
sage: E.local_data()
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(-2 a^{5} + 3 a^{4} + 10 a^{3} - 12 a^{2} - 11 a + 6\right) \) \(49\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p \) except those listed.

prime Image of Galois Representation
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 49.1-b consists of curves linked by isogenies of degree 3.

Base change

This curve is not the base-change of an elliptic curve defined over \(\Q\). It is not a \(\Q\)-curve.