Properties

Base field 6.6.485125.1
Label 6.6.485125.1-41.1-b3
Conductor \((41,2 a^{5} - 2 a^{4} - 10 a^{3} + 7 a^{2} + 11 a - 4)\)
Conductor norm \( 41 \)
CM no
base-change no
Q-curve no
Torsion order \( 2 \)
Rank not available

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Base field 6.6.485125.1

Generator \(a\), with minimal polynomial \( x^{6} - 2 x^{5} - 4 x^{4} + 8 x^{3} + 2 x^{2} - 5 x + 1 \); class number \(1\).

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -5, 2, 8, -4, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^6 - 2*x^5 - 4*x^4 + 8*x^3 + 2*x^2 - 5*x + 1)
 
gp (2.8): K = nfinit(a^6 - 2*a^5 - 4*a^4 + 8*a^3 + 2*a^2 - 5*a + 1);
 

Weierstrass equation

\( y^2 + \left(-a^{5} + 2 a^{4} + 4 a^{3} - 6 a^{2} - 3 a + 2\right) x y + \left(-a^{5} + 2 a^{4} + 4 a^{3} - 7 a^{2} - 2 a + 3\right) y = x^{3} + \left(a^{5} - a^{4} - 5 a^{3} + 4 a^{2} + 5 a - 2\right) x^{2} + \left(7 a^{5} + a^{4} - 46 a^{3} + 59 a - 26\right) x + 18 a^{5} - 20 a^{4} - 50 a^{3} + 53 a^{2} - 44 a + 23 \)
magma: E := ChangeRing(EllipticCurve([-a^5 + 2*a^4 + 4*a^3 - 6*a^2 - 3*a + 2, a^5 - a^4 - 5*a^3 + 4*a^2 + 5*a - 2, -a^5 + 2*a^4 + 4*a^3 - 7*a^2 - 2*a + 3, 7*a^5 + a^4 - 46*a^3 + 59*a - 26, 18*a^5 - 20*a^4 - 50*a^3 + 53*a^2 - 44*a + 23]),K);
 
sage: E = EllipticCurve(K, [-a^5 + 2*a^4 + 4*a^3 - 6*a^2 - 3*a + 2, a^5 - a^4 - 5*a^3 + 4*a^2 + 5*a - 2, -a^5 + 2*a^4 + 4*a^3 - 7*a^2 - 2*a + 3, 7*a^5 + a^4 - 46*a^3 + 59*a - 26, 18*a^5 - 20*a^4 - 50*a^3 + 53*a^2 - 44*a + 23])
 
gp (2.8): E = ellinit([-a^5 + 2*a^4 + 4*a^3 - 6*a^2 - 3*a + 2, a^5 - a^4 - 5*a^3 + 4*a^2 + 5*a - 2, -a^5 + 2*a^4 + 4*a^3 - 7*a^2 - 2*a + 3, 7*a^5 + a^4 - 46*a^3 + 59*a - 26, 18*a^5 - 20*a^4 - 50*a^3 + 53*a^2 - 44*a + 23],K)
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

\(\mathfrak{N} \) = \((41,2 a^{5} - 2 a^{4} - 10 a^{3} + 7 a^{2} + 11 a - 4)\) = \( \left(a^{5} - 5 a^{3} + 5 a\right) \)
magma: Conductor(E);
 
sage: E.conductor()
 
\(N(\mathfrak{N}) \) = \( 41 \) = \( 41 \)
magma: Norm(Conductor(E));
 
sage: E.conductor().norm()
 
\(\mathfrak{D}\) = \((4750104241,a^{5} - a^{4} - 5 a^{3} + 4 a^{2} + 5 a + 2121424451,-a^{5} + 2 a^{4} + 4 a^{3} - 7 a^{2} - 3 a + 425629576,a^{5} - a^{4} - 4 a^{3} + 3 a^{2} + 2 a + 2829352584,a + 3771392398,-a^{5} + a^{4} + 5 a^{3} - 3 a^{2} - 5 a + 850556124)\) = \( \left(a^{5} - 5 a^{3} + 5 a\right)^{6} \)
magma: Discriminant(E);
 
sage: E.discriminant()
 
gp (2.8): E.disc
 
\(N(\mathfrak{D})\) = \( 4750104241 \) = \( 41^{6} \)
magma: Norm(Discriminant(E));
 
sage: E.discriminant().norm()
 
gp (2.8): norm(E.disc)
 
\(j\) = \( \frac{5160746097604466171083}{4750104241} a^{5} - \frac{15116996144924874322550}{4750104241} a^{4} - \frac{6596324090888058193728}{4750104241} a^{3} + \frac{47417622246192743893408}{4750104241} a^{2} - \frac{33743571908962038596076}{4750104241} a + \frac{5553513136786228568492}{4750104241} \)
magma: jInvariant(E);
 
sage: E.j_invariant()
 
gp (2.8): E.j
 
\( \text{End} (E) \) = \(\Z\)   (no Complex Multiplication )
magma: HasComplexMultiplication(E);
 
sage: E.has_cm(), E.cm_discriminant()
 
\( \text{ST} (E) \) = $\mathrm{SU}(2)$

Mordell-Weil group

Rank not available.
magma: Rank(E);
 
sage: E.rank()
 
magma: Generators(E); // includes torsion
 
sage: E.gens()
 

Regulator: not available

magma: Regulator(Generators(E));
 
sage: E.regulator_of_points(E.gens())
 

Torsion subgroup

Structure: \(\Z/2\Z\)
magma: TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[2]
 
magma: Order(TorsionSubgroup(E));
 
sage: E.torsion_order()
 
gp (2.8): elltors(E)[1]
 
Generator: $\left(-\frac{5}{4} a^{5} + \frac{3}{4} a^{4} + \frac{13}{2} a^{3} - \frac{17}{4} a^{2} - 8 a + 4 : \frac{7}{4} a^{5} - \frac{5}{4} a^{4} - \frac{25}{4} a^{3} + \frac{47}{8} a^{2} + \frac{3}{2} a - \frac{21}{8} : 1\right)$
magma: [f(P): P in Generators(T)] where T,f:=TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[3]
 

Local data at primes of bad reduction

magma: LocalInformation(E);
 
sage: E.local_data()
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(a^{5} - 5 a^{3} + 5 a\right) \) \(41\) \(6\) \(I_{6}\) Split multiplicative \(-1\) \(1\) \(6\) \(6\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 41.1-b consists of curves linked by isogenies of degrees dividing 6.

Base change

This curve is not the base-change of an elliptic curve defined over \(\Q\). It is not a \(\Q\)-curve.