Properties

Base field 6.6.485125.1
Label 6.6.485125.1-41.1-b2
Conductor \((41,2 a^{5} - 2 a^{4} - 10 a^{3} + 7 a^{2} + 11 a - 4)\)
Conductor norm \( 41 \)
CM no
base-change no
Q-curve no
Torsion order \( 2 \)
Rank not available

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Base field 6.6.485125.1

Generator \(a\), with minimal polynomial \( x^{6} - 2 x^{5} - 4 x^{4} + 8 x^{3} + 2 x^{2} - 5 x + 1 \); class number \(1\).

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -5, 2, 8, -4, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^6 - 2*x^5 - 4*x^4 + 8*x^3 + 2*x^2 - 5*x + 1)
 
gp (2.8): K = nfinit(a^6 - 2*a^5 - 4*a^4 + 8*a^3 + 2*a^2 - 5*a + 1);
 

Weierstrass equation

\( y^2 + \left(a^{3} - 2 a\right) x y + \left(a^{5} - 5 a^{3} + 5 a\right) y = x^{3} + \left(-a^{5} + 2 a^{4} + 5 a^{3} - 7 a^{2} - 7 a + 2\right) x^{2} + \left(-2 a^{5} + a^{4} + 9 a^{3} - a^{2} - 9 a - 2\right) x - 44 a^{5} + 82 a^{4} + 189 a^{3} - 329 a^{2} - 145 a + 209 \)
magma: E := ChangeRing(EllipticCurve([a^3 - 2*a, -a^5 + 2*a^4 + 5*a^3 - 7*a^2 - 7*a + 2, a^5 - 5*a^3 + 5*a, -2*a^5 + a^4 + 9*a^3 - a^2 - 9*a - 2, -44*a^5 + 82*a^4 + 189*a^3 - 329*a^2 - 145*a + 209]),K);
 
sage: E = EllipticCurve(K, [a^3 - 2*a, -a^5 + 2*a^4 + 5*a^3 - 7*a^2 - 7*a + 2, a^5 - 5*a^3 + 5*a, -2*a^5 + a^4 + 9*a^3 - a^2 - 9*a - 2, -44*a^5 + 82*a^4 + 189*a^3 - 329*a^2 - 145*a + 209])
 
gp (2.8): E = ellinit([a^3 - 2*a, -a^5 + 2*a^4 + 5*a^3 - 7*a^2 - 7*a + 2, a^5 - 5*a^3 + 5*a, -2*a^5 + a^4 + 9*a^3 - a^2 - 9*a - 2, -44*a^5 + 82*a^4 + 189*a^3 - 329*a^2 - 145*a + 209],K)
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

\(\mathfrak{N} \) = \((41,2 a^{5} - 2 a^{4} - 10 a^{3} + 7 a^{2} + 11 a - 4)\) = \( \left(a^{5} - 5 a^{3} + 5 a\right) \)
magma: Conductor(E);
 
sage: E.conductor()
 
\(N(\mathfrak{N}) \) = \( 41 \) = \( 41 \)
magma: Norm(Conductor(E));
 
sage: E.conductor().norm()
 
\(\mathfrak{D}\) = \((68921,a^{5} - a^{4} - 5 a^{3} + 4 a^{2} + 5 a + 36071,-a^{5} + 2 a^{4} + 4 a^{3} - 7 a^{2} - 3 a + 42401,a^{5} - a^{4} - 4 a^{3} + 3 a^{2} + 2 a + 7692,a + 35278,-a^{5} + a^{4} + 5 a^{3} - 3 a^{2} - 5 a + 2063)\) = \( \left(a^{5} - 5 a^{3} + 5 a\right)^{3} \)
magma: Discriminant(E);
 
sage: E.discriminant()
 
gp (2.8): E.disc
 
\(N(\mathfrak{D})\) = \( 68921 \) = \( 41^{3} \)
magma: Norm(Discriminant(E));
 
sage: E.discriminant().norm()
 
gp (2.8): norm(E.disc)
 
\(j\) = \( \frac{57994411213}{68921} a^{5} - \frac{36997763035}{68921} a^{4} - \frac{348580821866}{68921} a^{3} + \frac{155415303320}{68921} a^{2} + \frac{514326915814}{68921} a - \frac{129528231830}{68921} \)
magma: jInvariant(E);
 
sage: E.j_invariant()
 
gp (2.8): E.j
 
\( \text{End} (E) \) = \(\Z\)   (no Complex Multiplication )
magma: HasComplexMultiplication(E);
 
sage: E.has_cm(), E.cm_discriminant()
 
\( \text{ST} (E) \) = $\mathrm{SU}(2)$

Mordell-Weil group

Rank not available.
magma: Rank(E);
 
sage: E.rank()
 
magma: Generators(E); // includes torsion
 
sage: E.gens()
 

Regulator: not available

magma: Regulator(Generators(E));
 
sage: E.regulator_of_points(E.gens())
 

Torsion subgroup

Structure: \(\Z/2\Z\)
magma: TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[2]
 
magma: Order(TorsionSubgroup(E));
 
sage: E.torsion_order()
 
gp (2.8): elltors(E)[1]
 
Generator: $\left(3 a^{5} - 5 a^{4} - 14 a^{3} + 19 a^{2} + 14 a - 10 : a^{5} - 2 a^{4} - 4 a^{3} + 7 a^{2} + 3 a - 3 : 1\right)$
magma: [f(P): P in Generators(T)] where T,f:=TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[3]
 

Local data at primes of bad reduction

magma: LocalInformation(E);
 
sage: E.local_data()
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(a^{5} - 5 a^{3} + 5 a\right) \) \(41\) \(3\) \(I_{3}\) Split multiplicative \(-1\) \(1\) \(3\) \(3\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 41.1-b consists of curves linked by isogenies of degrees dividing 6.

Base change

This curve is not the base-change of an elliptic curve defined over \(\Q\). It is not a \(\Q\)-curve.