Properties

Label 6.6.485125.1-31.1-a6
Base field 6.6.485125.1
Conductor norm \( 31 \)
CM no
Base change no
Q-curve no
Torsion order \( 8 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 6.6.485125.1

Generator \(a\), with minimal polynomial \( x^{6} - 2 x^{5} - 4 x^{4} + 8 x^{3} + 2 x^{2} - 5 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -5, 2, 8, -4, -2, 1]))
 
gp: K = nfinit(Polrev([1, -5, 2, 8, -4, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -5, 2, 8, -4, -2, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{5}-a^{4}-5a^{3}+4a^{2}+5a-1\right){x}{y}+\left(a^{5}-a^{4}-4a^{3}+3a^{2}+2a\right){y}={x}^{3}+\left(a^{5}-6a^{3}+7a+2\right){x}^{2}+\left(-5a^{5}+8a^{4}+23a^{3}-28a^{2}-23a+11\right){x}+28a^{5}-36a^{4}-138a^{3}+127a^{2}+147a-39\)
sage: E = EllipticCurve([K([-1,5,4,-5,-1,1]),K([2,7,0,-6,0,1]),K([0,2,3,-4,-1,1]),K([11,-23,-28,23,8,-5]),K([-39,147,127,-138,-36,28])])
 
gp: E = ellinit([Polrev([-1,5,4,-5,-1,1]),Polrev([2,7,0,-6,0,1]),Polrev([0,2,3,-4,-1,1]),Polrev([11,-23,-28,23,8,-5]),Polrev([-39,147,127,-138,-36,28])], K);
 
magma: E := EllipticCurve([K![-1,5,4,-5,-1,1],K![2,7,0,-6,0,1],K![0,2,3,-4,-1,1],K![11,-23,-28,23,8,-5],K![-39,147,127,-138,-36,28]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((2a^5-3a^4-8a^3+10a^2+5a-4)\) = \((2a^5-3a^4-8a^3+10a^2+5a-4)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 31 \) = \(31\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((2a^4-3a^3-5a^2+5a-4)\) = \((2a^5-3a^4-8a^3+10a^2+5a-4)^{3}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -29791 \) = \(-31^{3}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{488148481814}{29791} a^{5} + \frac{1817229407860}{29791} a^{4} - \frac{1334351754367}{29791} a^{3} - \frac{1342176233637}{29791} a^{2} + \frac{1446135272219}{29791} a - \frac{259491223572}{29791} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/8\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(4 a^{5} - 5 a^{4} - 20 a^{3} + 17 a^{2} + 22 a - 4 : 12 a^{5} - 15 a^{4} - 60 a^{3} + 52 a^{2} + 66 a - 13 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 65650.744619812979434042832843806044734 \)
Tamagawa product: \( 1 \)
Torsion order: \(8\)
Leading coefficient: \( 1.47276 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((2a^5-3a^4-8a^3+10a^2+5a-4)\) \(31\) \(1\) \(I_{3}\) Non-split multiplicative \(1\) \(1\) \(3\) \(3\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3, 4, 6, 8, 12 and 24.
Its isogeny class 31.1-a consists of curves linked by isogenies of degrees dividing 24.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.