Properties

Label 6.6.485125.1-31.1-a4
Base field 6.6.485125.1
Conductor norm \( 31 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 6.6.485125.1

Generator \(a\), with minimal polynomial \( x^{6} - 2 x^{5} - 4 x^{4} + 8 x^{3} + 2 x^{2} - 5 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -5, 2, 8, -4, -2, 1]))
 
gp: K = nfinit(Polrev([1, -5, 2, 8, -4, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -5, 2, 8, -4, -2, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{5}-a^{4}-5a^{3}+4a^{2}+5a-1\right){x}{y}+\left(a^{5}-a^{4}-4a^{3}+3a^{2}+2a\right){y}={x}^{3}+\left(a^{5}-6a^{3}+7a+2\right){x}^{2}+\left(-2340a^{5}+3083a^{4}+11588a^{3}-10918a^{2}-12508a+3176\right){x}-82115a^{5}+108051a^{4}+403418a^{3}-382074a^{2}-428431a+118082\)
sage: E = EllipticCurve([K([-1,5,4,-5,-1,1]),K([2,7,0,-6,0,1]),K([0,2,3,-4,-1,1]),K([3176,-12508,-10918,11588,3083,-2340]),K([118082,-428431,-382074,403418,108051,-82115])])
 
gp: E = ellinit([Polrev([-1,5,4,-5,-1,1]),Polrev([2,7,0,-6,0,1]),Polrev([0,2,3,-4,-1,1]),Polrev([3176,-12508,-10918,11588,3083,-2340]),Polrev([118082,-428431,-382074,403418,108051,-82115])], K);
 
magma: E := EllipticCurve([K![-1,5,4,-5,-1,1],K![2,7,0,-6,0,1],K![0,2,3,-4,-1,1],K![3176,-12508,-10918,11588,3083,-2340],K![118082,-428431,-382074,403418,108051,-82115]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((2a^5-3a^4-8a^3+10a^2+5a-4)\) = \((2a^5-3a^4-8a^3+10a^2+5a-4)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 31 \) = \(31\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((983081a^5-1160204a^4-4935963a^3+4682995a^2+4917165a-2633621)\) = \((2a^5-3a^4-8a^3+10a^2+5a-4)^{24}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 620412660965527688188300451573157121 \) = \(31^{24}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{308629524306573180705764124400765214989728416}{620412660965527688188300451573157121} a^{5} - \frac{96678377635333373686040740401662681795239150}{620412660965527688188300451573157121} a^{4} - \frac{1398478163616726416481971891411691120456947555}{620412660965527688188300451573157121} a^{3} + \frac{111294770463329935355252104822968002094080011}{620412660965527688188300451573157121} a^{2} + \frac{807036468907095340993839638491373208865016181}{620412660965527688188300451573157121} a - \frac{182510843354625433266392408147536567243503960}{620412660965527688188300451573157121} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{79}{4} a^{5} + \frac{75}{4} a^{4} + \frac{399}{4} a^{3} - 63 a^{2} - \frac{411}{4} a + 15 : 26 a^{5} - 32 a^{4} - 130 a^{3} + \frac{231}{2} a^{2} + \frac{275}{2} a - \frac{291}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 2.0035017278995660227674204359071668926 \)
Tamagawa product: \( 2 \)
Torsion order: \(2\)
Leading coefficient: \( 1.47276 \)
Analytic order of Ш: \( 1024 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((2a^5-3a^4-8a^3+10a^2+5a-4)\) \(31\) \(2\) \(I_{24}\) Non-split multiplicative \(1\) \(1\) \(24\) \(24\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3, 4, 6, 8, 12 and 24.
Its isogeny class 31.1-a consists of curves linked by isogenies of degrees dividing 24.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.