Properties

Base field 6.6.485125.1
Label 6.6.485125.1-31.1-a10
Conductor \((31,-a^{4} + 4 a^{2} + a - 3)\)
Conductor norm \( 31 \)
CM no
base-change no
Q-curve no
Torsion order \( 4 \)
Rank not available

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Base field 6.6.485125.1

Generator \(a\), with minimal polynomial \( x^{6} - 2 x^{5} - 4 x^{4} + 8 x^{3} + 2 x^{2} - 5 x + 1 \); class number \(1\).

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -5, 2, 8, -4, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^6 - 2*x^5 - 4*x^4 + 8*x^3 + 2*x^2 - 5*x + 1)
 
gp (2.8): K = nfinit(a^6 - 2*a^5 - 4*a^4 + 8*a^3 + 2*a^2 - 5*a + 1);
 

Weierstrass equation

\( y^2 + \left(-2 a^{5} + 3 a^{4} + 9 a^{3} - 10 a^{2} - 8 a + 3\right) x y = x^{3} + \left(-a^{5} + 5 a^{3} + a^{2} - 5 a - 1\right) x^{2} + \left(10 a^{5} - 40 a^{4} - 45 a^{3} + 165 a^{2} + 45 a - 104\right) x - 98 a^{5} + 215 a^{4} + 445 a^{3} - 840 a^{2} - 378 a + 495 \)
magma: E := ChangeRing(EllipticCurve([-2*a^5 + 3*a^4 + 9*a^3 - 10*a^2 - 8*a + 3, -a^5 + 5*a^3 + a^2 - 5*a - 1, 0, 10*a^5 - 40*a^4 - 45*a^3 + 165*a^2 + 45*a - 104, -98*a^5 + 215*a^4 + 445*a^3 - 840*a^2 - 378*a + 495]),K);
 
sage: E = EllipticCurve(K, [-2*a^5 + 3*a^4 + 9*a^3 - 10*a^2 - 8*a + 3, -a^5 + 5*a^3 + a^2 - 5*a - 1, 0, 10*a^5 - 40*a^4 - 45*a^3 + 165*a^2 + 45*a - 104, -98*a^5 + 215*a^4 + 445*a^3 - 840*a^2 - 378*a + 495])
 
gp (2.8): E = ellinit([-2*a^5 + 3*a^4 + 9*a^3 - 10*a^2 - 8*a + 3, -a^5 + 5*a^3 + a^2 - 5*a - 1, 0, 10*a^5 - 40*a^4 - 45*a^3 + 165*a^2 + 45*a - 104, -98*a^5 + 215*a^4 + 445*a^3 - 840*a^2 - 378*a + 495],K)
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

\(\mathfrak{N} \) = \((31,-a^{4} + 4 a^{2} + a - 3)\) = \( \left(2 a^{5} - 3 a^{4} - 8 a^{3} + 10 a^{2} + 5 a - 4\right) \)
magma: Conductor(E);
 
sage: E.conductor()
 
\(N(\mathfrak{N}) \) = \( 31 \) = \( 31 \)
magma: Norm(Conductor(E));
 
sage: E.conductor().norm()
 
\(\mathfrak{D}\) = \((31,a^{5} - a^{4} - 5 a^{3} + 4 a^{2} + 5 a + 16,-a^{5} + 2 a^{4} + 4 a^{3} - 7 a^{2} - 3 a + 19,a^{5} - a^{4} - 4 a^{3} + 3 a^{2} + 2 a + 15,a + 22,-a^{5} + a^{4} + 5 a^{3} - 3 a^{2} - 5 a + 27)\) = \( \left(2 a^{5} - 3 a^{4} - 8 a^{3} + 10 a^{2} + 5 a - 4\right) \)
magma: Discriminant(E);
 
sage: E.discriminant()
 
gp (2.8): E.disc
 
\(N(\mathfrak{D})\) = \( 31 \) = \( 31 \)
magma: Norm(Discriminant(E));
 
sage: E.discriminant().norm()
 
gp (2.8): norm(E.disc)
 
\(j\) = \( -\frac{11771614728650068311718789996606}{31} a^{5} + \frac{20672646131967906688095174594552}{31} a^{4} + \frac{52127615514169524635482470593815}{31} a^{3} - \frac{81461266340971407505611370906367}{31} a^{2} - \frac{43408078775695757231287999254039}{31} a + \frac{48272736797749486398912337205132}{31} \)
magma: jInvariant(E);
 
sage: E.j_invariant()
 
gp (2.8): E.j
 
\( \text{End} (E) \) = \(\Z\)   (no Complex Multiplication )
magma: HasComplexMultiplication(E);
 
sage: E.has_cm(), E.cm_discriminant()
 
\( \text{ST} (E) \) = $\mathrm{SU}(2)$

Mordell-Weil group

Rank not available.
magma: Rank(E);
 
sage: E.rank()
 
magma: Generators(E); // includes torsion
 
sage: E.gens()
 

Regulator: not available

magma: Regulator(Generators(E));
 
sage: E.regulator_of_points(E.gens())
 

Torsion subgroup

Structure: \(\Z/4\Z\)
magma: TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[2]
 
magma: Order(TorsionSubgroup(E));
 
sage: E.torsion_order()
 
gp (2.8): elltors(E)[1]
 
Generator: $\left(6 : 8 a^{5} - 17 a^{4} - 36 a^{3} + 63 a^{2} + 33 a - 13 : 1\right)$
magma: [f(P): P in Generators(T)] where T,f:=TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[3]
 

Local data at primes of bad reduction

magma: LocalInformation(E);
 
sage: E.local_data()
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(2 a^{5} - 3 a^{4} - 8 a^{3} + 10 a^{2} + 5 a - 4\right) \) \(31\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3, 4, 6, 8, 12 and 24.
Its isogeny class 31.1-a consists of curves linked by isogenies of degrees dividing 24.

Base change

This curve is not the base-change of an elliptic curve defined over \(\Q\). It is not a \(\Q\)-curve.