Properties

Base field 6.6.485125.1
Label 6.6.485125.1-1.1-a1
Conductor \((1)\)
Conductor norm \( 1 \)
CM no
base-change no
Q-curve no
Torsion order \( 1 \)
Rank not available

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Base field 6.6.485125.1

Generator \(a\), with minimal polynomial \( x^{6} - 2 x^{5} - 4 x^{4} + 8 x^{3} + 2 x^{2} - 5 x + 1 \); class number \(1\).

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -5, 2, 8, -4, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^6 - 2*x^5 - 4*x^4 + 8*x^3 + 2*x^2 - 5*x + 1)
 
gp (2.8): K = nfinit(a^6 - 2*a^5 - 4*a^4 + 8*a^3 + 2*a^2 - 5*a + 1);
 

Weierstrass equation

\( y^2 + \left(a^{5} - a^{4} - 4 a^{3} + 3 a^{2} + 3 a - 1\right) x y + \left(a^{2} + a - 1\right) y = x^{3} + \left(-a^{5} + 6 a^{3} - 7 a - 2\right) x^{2} + \left(-126 a^{5} - 117 a^{4} + 741 a^{3} + 702 a^{2} - 1132 a - 1114\right) x - 3781 a^{5} - 2012 a^{4} + 17879 a^{3} + 9699 a^{2} - 19472 a - 13392 \)
magma: E := ChangeRing(EllipticCurve([a^5 - a^4 - 4*a^3 + 3*a^2 + 3*a - 1, -a^5 + 6*a^3 - 7*a - 2, a^2 + a - 1, -126*a^5 - 117*a^4 + 741*a^3 + 702*a^2 - 1132*a - 1114, -3781*a^5 - 2012*a^4 + 17879*a^3 + 9699*a^2 - 19472*a - 13392]),K);
 
sage: E = EllipticCurve(K, [a^5 - a^4 - 4*a^3 + 3*a^2 + 3*a - 1, -a^5 + 6*a^3 - 7*a - 2, a^2 + a - 1, -126*a^5 - 117*a^4 + 741*a^3 + 702*a^2 - 1132*a - 1114, -3781*a^5 - 2012*a^4 + 17879*a^3 + 9699*a^2 - 19472*a - 13392])
 
gp (2.8): E = ellinit([a^5 - a^4 - 4*a^3 + 3*a^2 + 3*a - 1, -a^5 + 6*a^3 - 7*a - 2, a^2 + a - 1, -126*a^5 - 117*a^4 + 741*a^3 + 702*a^2 - 1132*a - 1114, -3781*a^5 - 2012*a^4 + 17879*a^3 + 9699*a^2 - 19472*a - 13392],K)
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

\(\mathfrak{N} \) = \((1)\) = \((1)\)
magma: Conductor(E);
 
sage: E.conductor()
 
\(N(\mathfrak{N}) \) = \( 1 \) = 1
magma: Norm(Conductor(E));
 
sage: E.conductor().norm()
 
\(\mathfrak{D}\) = \((1)\) = \((1)\)
magma: Discriminant(E);
 
sage: E.discriminant()
 
gp (2.8): E.disc
 
\(N(\mathfrak{D})\) = \( 1 \) = 1
magma: Norm(Discriminant(E));
 
sage: E.discriminant().norm()
 
gp (2.8): norm(E.disc)
 
\(j\) = \( 1606219307040269000685664528235176250888 a^{5} - 505201255314545228245706103526492515760 a^{4} - 7276379701134851706189760667243713057765 a^{3} + 585621608998000505707418880591397665054 a^{2} + 4199487325941333963885321109586284787419 a - 952979041145067887798527201046030804711 \)
magma: jInvariant(E);
 
sage: E.j_invariant()
 
gp (2.8): E.j
 
\( \text{End} (E) \) = \(\Z\)   (no Complex Multiplication )
magma: HasComplexMultiplication(E);
 
sage: E.has_cm(), E.cm_discriminant()
 
\( \text{ST} (E) \) = $\mathrm{SU}(2)$

Mordell-Weil group

Rank not available.
magma: Rank(E);
 
sage: E.rank()
 
magma: Generators(E); // includes torsion
 
sage: E.gens()
 

Regulator: not available

magma: Regulator(Generators(E));
 
sage: E.regulator_of_points(E.gens())
 

Torsion subgroup

Structure: Trivial
magma: TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[2]
 
magma: Order(TorsionSubgroup(E));
 
sage: E.torsion_order()
 
gp (2.8): elltors(E)[1]
 

Local data at primes of bad reduction

magma: LocalInformation(E);
 
sage: E.local_data()
 
No primes of bad reduction.

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p \) except those listed.

prime Image of Galois Representation
\(3\) 3B
\(11\) 11B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3, 11 and 33.
Its isogeny class 1.1-a consists of curves linked by isogenies of degrees dividing 33.

Base change

This curve is not the base-change of an elliptic curve defined over \(\Q\). It is not a \(\Q\)-curve.