Properties

Label 6.6.453789.1-49.1-a4
Base field \(\Q(\zeta_{21})^+\)
Conductor norm \( 49 \)
CM yes (\(-28\))
Base change yes
Q-curve yes
Torsion order \( 14 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\zeta_{21})^+\)

Generator \(a\), with minimal polynomial \( x^{6} - x^{5} - 6 x^{4} + 6 x^{3} + 8 x^{2} - 8 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -8, 8, 6, -6, -1, 1]))
 
gp: K = nfinit(Polrev([1, -8, 8, 6, -6, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -8, 8, 6, -6, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{5}-5a^{3}+a^{2}+5a-1\right){x}{y}+\left(a^{3}-3a\right){y}={x}^{3}+\left(a^{5}-6a^{3}+a^{2}+8a-2\right){x}^{2}+\left(-15a^{5}+100a^{3}-15a^{2}-150a+20\right){x}+34a^{5}-232a^{3}+34a^{2}+356a-51\)
sage: E = EllipticCurve([K([-1,5,1,-5,0,1]),K([-2,8,1,-6,0,1]),K([0,-3,0,1,0,0]),K([20,-150,-15,100,0,-15]),K([-51,356,34,-232,0,34])])
 
gp: E = ellinit([Polrev([-1,5,1,-5,0,1]),Polrev([-2,8,1,-6,0,1]),Polrev([0,-3,0,1,0,0]),Polrev([20,-150,-15,100,0,-15]),Polrev([-51,356,34,-232,0,34])], K);
 
magma: E := EllipticCurve([K![-1,5,1,-5,0,1],K![-2,8,1,-6,0,1],K![0,-3,0,1,0,0],K![20,-150,-15,100,0,-15],K![-51,356,34,-232,0,34]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a^5+4a^3-a^2-2a+2)\) = \((a^5-6a^3+a^2+9a-4)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 49 \) = \(7^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((7)\) = \((a^5-6a^3+a^2+9a-4)^{6}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 117649 \) = \(7^{6}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( 16581375 \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z[\sqrt{-7}]\) (potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $N(\mathrm{U}(1))$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-a^{5} + 3 a^{4} + 7 a^{3} - 14 a^{2} - 11 a + 16 : -15 a^{5} + 4 a^{4} + 84 a^{3} - 41 a^{2} - 110 a + 70 : 1\right)$
Height \(0.21918026689575426058073252294022182761\)
Torsion structure: \(\Z/14\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-2 a^{5} + 13 a^{3} - 2 a^{2} - 19 a + 4 : -4 a^{5} + 26 a^{3} - 4 a^{2} - 38 a + 6 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.21918026689575426058073252294022182761 \)
Period: \( 125372.83396343342723708473628145604772 \)
Tamagawa product: \( 2 \)
Torsion order: \(14\)
Leading coefficient: \( 2.49749 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^5-6a^3+a^2+9a-4)\) \(7\) \(2\) \(I_0^{*}\) Additive \(-1\) \(2\) \(6\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(7\) 7B.1.1[3]

For all other primes \(p\), the image is a Borel subgroup if \(p=2\), the normalizer of a split Cartan subgroup if \(\left(\frac{ -7 }{p}\right)=+1\) or the normalizer of a nonsplit Cartan subgroup if \(\left(\frac{ -7 }{p}\right)=-1\).

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 7 and 14.
Its isogeny class 49.1-a consists of curves linked by isogenies of degrees dividing 14.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 5 elliptic curves:

Base field Curve
\(\Q\) 49.a1
\(\Q\) 441.c3
\(\Q(\sqrt{21}) \) 2.2.21.1-49.1-b3
\(\Q(\zeta_{7})^+\) a curve with conductor norm 35721 (not in the database)
\(\Q(\zeta_{7})^+\) 3.3.49.1-49.1-a1