Properties

Base field \(\Q(\zeta_{21})^+\)
Label 6.6.453789.1-43.1-b2
Conductor \((43,-a^{5} + a^{4} + 6 a^{3} - 5 a^{2} - 9 a + 4)\)
Conductor norm \( 43 \)
CM no
base-change no
Q-curve no
Torsion order \( 11 \)
Rank not available

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Base field \(\Q(\zeta_{21})^+\)

Generator \(a\), with minimal polynomial \( x^{6} - x^{5} - 6 x^{4} + 6 x^{3} + 8 x^{2} - 8 x + 1 \); class number \(1\).

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -8, 8, 6, -6, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^6 - x^5 - 6*x^4 + 6*x^3 + 8*x^2 - 8*x + 1)
 
gp (2.8): K = nfinit(a^6 - a^5 - 6*a^4 + 6*a^3 + 8*a^2 - 8*a + 1);
 

Weierstrass equation

\( y^2 + \left(a^{5} - 5 a^{3} + a^{2} + 5 a - 1\right) x y + \left(a^{5} + a^{4} - 5 a^{3} - 2 a^{2} + 6 a - 2\right) y = x^{3} + \left(-a^{5} + a^{4} + 6 a^{3} - 6 a^{2} - 9 a + 6\right) x^{2} + \left(-2 a^{5} - 2 a^{4} + 9 a^{3} + 4 a^{2} - 8 a + 6\right) x + a^{5} + a^{4} - 5 a^{3} - 5 a^{2} + 3 a + 1 \)
magma: E := ChangeRing(EllipticCurve([a^5 - 5*a^3 + a^2 + 5*a - 1, -a^5 + a^4 + 6*a^3 - 6*a^2 - 9*a + 6, a^5 + a^4 - 5*a^3 - 2*a^2 + 6*a - 2, -2*a^5 - 2*a^4 + 9*a^3 + 4*a^2 - 8*a + 6, a^5 + a^4 - 5*a^3 - 5*a^2 + 3*a + 1]),K);
 
sage: E = EllipticCurve(K, [a^5 - 5*a^3 + a^2 + 5*a - 1, -a^5 + a^4 + 6*a^3 - 6*a^2 - 9*a + 6, a^5 + a^4 - 5*a^3 - 2*a^2 + 6*a - 2, -2*a^5 - 2*a^4 + 9*a^3 + 4*a^2 - 8*a + 6, a^5 + a^4 - 5*a^3 - 5*a^2 + 3*a + 1])
 
gp (2.8): E = ellinit([a^5 - 5*a^3 + a^2 + 5*a - 1, -a^5 + a^4 + 6*a^3 - 6*a^2 - 9*a + 6, a^5 + a^4 - 5*a^3 - 2*a^2 + 6*a - 2, -2*a^5 - 2*a^4 + 9*a^3 + 4*a^2 - 8*a + 6, a^5 + a^4 - 5*a^3 - 5*a^2 + 3*a + 1],K)
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

\(\mathfrak{N} \) = \((43,-a^{5} + a^{4} + 6 a^{3} - 5 a^{2} - 9 a + 4)\) = \( \left(a^{3} + a^{2} - 3 a - 1\right) \)
magma: Conductor(E);
 
sage: E.conductor()
 
\(N(\mathfrak{N}) \) = \( 43 \) = \( 43 \)
magma: Norm(Conductor(E));
 
sage: E.conductor().norm()
 
\(\mathfrak{D}\) = \((43,a^{3} - 3 a + 24,a^{5} - 5 a^{3} + a^{2} + 5 a + 6,a^{4} - 4 a^{2} + 34,a + 5,a^{2} + 18)\) = \( \left(a^{3} + a^{2} - 3 a - 1\right) \)
magma: Discriminant(E);
 
sage: E.discriminant()
 
gp (2.8): E.disc
 
\(N(\mathfrak{D})\) = \( 43 \) = \( 43 \)
magma: Norm(Discriminant(E));
 
sage: E.discriminant().norm()
 
gp (2.8): norm(E.disc)
 
\(j\) = \( \frac{159376181}{43} a^{5} - \frac{145623752}{43} a^{4} - \frac{948152084}{43} a^{3} + \frac{815727811}{43} a^{2} + \frac{1334598975}{43} a - \frac{1032410901}{43} \)
magma: jInvariant(E);
 
sage: E.j_invariant()
 
gp (2.8): E.j
 
\( \text{End} (E) \) = \(\Z\)   (no Complex Multiplication )
magma: HasComplexMultiplication(E);
 
sage: E.has_cm(), E.cm_discriminant()
 
\( \text{ST} (E) \) = $\mathrm{SU}(2)$

Mordell-Weil group

Rank not available.
magma: Rank(E);
 
sage: E.rank()
 
magma: Generators(E); // includes torsion
 
sage: E.gens()
 

Regulator: not available

magma: Regulator(Generators(E));
 
sage: E.regulator_of_points(E.gens())
 

Torsion subgroup

Structure: \(\Z/11\Z\)
magma: TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[2]
 
magma: Order(TorsionSubgroup(E));
 
sage: E.torsion_order()
 
gp (2.8): elltors(E)[1]
 
Generator: $\left(a^{2} + a - 1 : -a^{5} - a^{4} + 5 a^{3} + 3 a^{2} - 5 a + 1 : 1\right)$
magma: [f(P): P in Generators(T)] where T,f:=TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[3]
 

Local data at primes of bad reduction

magma: LocalInformation(E);
 
sage: E.local_data()
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(a^{3} + a^{2} - 3 a - 1\right) \) \(43\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p \) except those listed.

prime Image of Galois Representation
\(11\) 11B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 11.
Its isogeny class 43.1-b consists of curves linked by isogenies of degree 11.

Base change

This curve is not the base-change of an elliptic curve defined over \(\Q\). It is not a \(\Q\)-curve.