Properties

Base field \(\Q(\zeta_{21})^+\)
Label 6.6.453789.1-43.1-b1
Conductor \((43,-a^{5} + a^{4} + 6 a^{3} - 5 a^{2} - 9 a + 4)\)
Conductor norm \( 43 \)
CM no
base-change no
Q-curve no
Torsion order \( 1 \)
Rank not available

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Base field \(\Q(\zeta_{21})^+\)

Generator \(a\), with minimal polynomial \( x^{6} - x^{5} - 6 x^{4} + 6 x^{3} + 8 x^{2} - 8 x + 1 \); class number \(1\).

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -8, 8, 6, -6, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^6 - x^5 - 6*x^4 + 6*x^3 + 8*x^2 - 8*x + 1)
 
gp (2.8): K = nfinit(a^6 - a^5 - 6*a^4 + 6*a^3 + 8*a^2 - 8*a + 1);
 

Weierstrass equation

\( y^2 + \left(a^{5} + a^{4} - 5 a^{3} - 2 a^{2} + 6 a - 1\right) x y = x^{3} + \left(-a^{5} + a^{4} + 6 a^{3} - 4 a^{2} - 9 a + 2\right) x^{2} + \left(298 a^{5} - 358 a^{4} - 2027 a^{3} + 1978 a^{2} + 3192 a - 2634\right) x + 22934 a^{5} - 21647 a^{4} - 143434 a^{3} + 125585 a^{2} + 208990 a - 162582 \)
magma: E := ChangeRing(EllipticCurve([a^5 + a^4 - 5*a^3 - 2*a^2 + 6*a - 1, -a^5 + a^4 + 6*a^3 - 4*a^2 - 9*a + 2, 0, 298*a^5 - 358*a^4 - 2027*a^3 + 1978*a^2 + 3192*a - 2634, 22934*a^5 - 21647*a^4 - 143434*a^3 + 125585*a^2 + 208990*a - 162582]),K);
 
sage: E = EllipticCurve(K, [a^5 + a^4 - 5*a^3 - 2*a^2 + 6*a - 1, -a^5 + a^4 + 6*a^3 - 4*a^2 - 9*a + 2, 0, 298*a^5 - 358*a^4 - 2027*a^3 + 1978*a^2 + 3192*a - 2634, 22934*a^5 - 21647*a^4 - 143434*a^3 + 125585*a^2 + 208990*a - 162582])
 
gp (2.8): E = ellinit([a^5 + a^4 - 5*a^3 - 2*a^2 + 6*a - 1, -a^5 + a^4 + 6*a^3 - 4*a^2 - 9*a + 2, 0, 298*a^5 - 358*a^4 - 2027*a^3 + 1978*a^2 + 3192*a - 2634, 22934*a^5 - 21647*a^4 - 143434*a^3 + 125585*a^2 + 208990*a - 162582],K)
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

\(\mathfrak{N} \) = \((43,-a^{5} + a^{4} + 6 a^{3} - 5 a^{2} - 9 a + 4)\) = \( \left(a^{3} + a^{2} - 3 a - 1\right) \)
magma: Conductor(E);
 
sage: E.conductor()
 
\(N(\mathfrak{N}) \) = \( 43 \) = \( 43 \)
magma: Norm(Conductor(E));
 
sage: E.conductor().norm()
 
\(\mathfrak{D}\) = \((929293739471222707,a^{3} - 3 a + 199369897586431851,a^{5} - 5 a^{3} + a^{2} + 5 a + 665604754416043051,a^{4} - 4 a^{2} + 369180307650455705,a + 432963530862064418,a^{2} + 912034457528694319)\) = \( \left(a^{3} + a^{2} - 3 a - 1\right)^{11} \)
magma: Discriminant(E);
 
sage: E.discriminant()
 
gp (2.8): E.disc
 
\(N(\mathfrak{D})\) = \( 929293739471222707 \) = \( 43^{11} \)
magma: Norm(Discriminant(E));
 
sage: E.discriminant().norm()
 
gp (2.8): norm(E.disc)
 
\(j\) = \( \frac{122671686822496847013039511249758605577398}{929293739471222707} a^{5} + \frac{80040521603412429280297685957868481938607}{929293739471222707} a^{4} - \frac{603764956031188829103770286089077775728189}{929293739471222707} a^{3} - \frac{261677914170315830376360951082281856697755}{929293739471222707} a^{2} + \frac{548956616586298989964223373216163970685955}{929293739471222707} a - \frac{74235009600386253636048203807121847689780}{929293739471222707} \)
magma: jInvariant(E);
 
sage: E.j_invariant()
 
gp (2.8): E.j
 
\( \text{End} (E) \) = \(\Z\)   (no Complex Multiplication )
magma: HasComplexMultiplication(E);
 
sage: E.has_cm(), E.cm_discriminant()
 
\( \text{ST} (E) \) = $\mathrm{SU}(2)$

Mordell-Weil group

Rank not available.
magma: Rank(E);
 
sage: E.rank()
 
magma: Generators(E); // includes torsion
 
sage: E.gens()
 

Regulator: not available

magma: Regulator(Generators(E));
 
sage: E.regulator_of_points(E.gens())
 

Torsion subgroup

Structure: Trivial
magma: TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[2]
 
magma: Order(TorsionSubgroup(E));
 
sage: E.torsion_order()
 
gp (2.8): elltors(E)[1]
 

Local data at primes of bad reduction

magma: LocalInformation(E);
 
sage: E.local_data()
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(a^{3} + a^{2} - 3 a - 1\right) \) \(43\) \(1\) \(I_{11}\) Non-split multiplicative \(1\) \(1\) \(11\) \(11\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p \) except those listed.

prime Image of Galois Representation
\(11\) 11B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 11.
Its isogeny class 43.1-b consists of curves linked by isogenies of degree 11.

Base change

This curve is not the base-change of an elliptic curve defined over \(\Q\). It is not a \(\Q\)-curve.