Properties

Base field \(\Q(\zeta_{21})^+\)
Label 6.6.453789.1-41.5-c1
Conductor \((41,-a^{4} - 2 a^{3} + 4 a^{2} + 6 a - 3)\)
Conductor norm \( 41 \)
CM no
base-change no
Q-curve no
Torsion order \( 1 \)
Rank not available

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Base field \(\Q(\zeta_{21})^+\)

Generator \(a\), with minimal polynomial \( x^{6} - x^{5} - 6 x^{4} + 6 x^{3} + 8 x^{2} - 8 x + 1 \); class number \(1\).

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -8, 8, 6, -6, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^6 - x^5 - 6*x^4 + 6*x^3 + 8*x^2 - 8*x + 1)
 
gp (2.8): K = nfinit(a^6 - a^5 - 6*a^4 + 6*a^3 + 8*a^2 - 8*a + 1);
 

Weierstrass equation

\( y^2 + \left(a^{5} + a^{4} - 5 a^{3} - 2 a^{2} + 6 a - 1\right) x y + \left(a^{4} - 3 a^{2} + 1\right) y = x^{3} + \left(a^{5} + a^{4} - 4 a^{3} - 2 a^{2} + 2 a - 1\right) x^{2} + \left(17 a^{5} + 11 a^{4} - 72 a^{3} - 20 a^{2} + 60 a - 11\right) x + 34 a^{5} + 34 a^{4} - 144 a^{3} - 84 a^{2} + 133 a - 13 \)
magma: E := ChangeRing(EllipticCurve([a^5 + a^4 - 5*a^3 - 2*a^2 + 6*a - 1, a^5 + a^4 - 4*a^3 - 2*a^2 + 2*a - 1, a^4 - 3*a^2 + 1, 17*a^5 + 11*a^4 - 72*a^3 - 20*a^2 + 60*a - 11, 34*a^5 + 34*a^4 - 144*a^3 - 84*a^2 + 133*a - 13]),K);
 
sage: E = EllipticCurve(K, [a^5 + a^4 - 5*a^3 - 2*a^2 + 6*a - 1, a^5 + a^4 - 4*a^3 - 2*a^2 + 2*a - 1, a^4 - 3*a^2 + 1, 17*a^5 + 11*a^4 - 72*a^3 - 20*a^2 + 60*a - 11, 34*a^5 + 34*a^4 - 144*a^3 - 84*a^2 + 133*a - 13])
 
gp (2.8): E = ellinit([a^5 + a^4 - 5*a^3 - 2*a^2 + 6*a - 1, a^5 + a^4 - 4*a^3 - 2*a^2 + 2*a - 1, a^4 - 3*a^2 + 1, 17*a^5 + 11*a^4 - 72*a^3 - 20*a^2 + 60*a - 11, 34*a^5 + 34*a^4 - 144*a^3 - 84*a^2 + 133*a - 13],K)
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

\(\mathfrak{N} \) = \((41,-a^{4} - 2 a^{3} + 4 a^{2} + 6 a - 3)\) = \( \left(a^{4} + 2 a^{3} - 4 a^{2} - 6 a + 3\right) \)
magma: Conductor(E);
 
sage: E.conductor()
 
\(N(\mathfrak{N}) \) = \( 41 \) = \( 41 \)
magma: Norm(Conductor(E));
 
sage: E.conductor().norm()
 
\(\mathfrak{D}\) = \((68921,a^{3} - 3 a + 19158,a^{5} - 5 a^{3} + a^{2} + 5 a + 63439,a^{4} - 4 a^{2} + 3917,a + 51398,a^{2} + 56447)\) = \( \left(a^{4} + 2 a^{3} - 4 a^{2} - 6 a + 3\right)^{3} \)
magma: Discriminant(E);
 
sage: E.discriminant()
 
gp (2.8): E.disc
 
\(N(\mathfrak{D})\) = \( 68921 \) = \( 41^{3} \)
magma: Norm(Discriminant(E));
 
sage: E.discriminant().norm()
 
gp (2.8): norm(E.disc)
 
\(j\) = \( -\frac{1824869065509}{68921} a^{5} + \frac{491296262031}{68921} a^{4} + \frac{11308085774361}{68921} a^{3} - \frac{2685847365072}{68921} a^{2} - \frac{16561220551596}{68921} a + \frac{2497339386342}{68921} \)
magma: jInvariant(E);
 
sage: E.j_invariant()
 
gp (2.8): E.j
 
\( \text{End} (E) \) = \(\Z\)   (no Complex Multiplication )
magma: HasComplexMultiplication(E);
 
sage: E.has_cm(), E.cm_discriminant()
 
\( \text{ST} (E) \) = $\mathrm{SU}(2)$

Mordell-Weil group

Rank not available.
magma: Rank(E);
 
sage: E.rank()
 
magma: Generators(E); // includes torsion
 
sage: E.gens()
 

Regulator: not available

magma: Regulator(Generators(E));
 
sage: E.regulator_of_points(E.gens())
 

Torsion subgroup

Structure: Trivial
magma: TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[2]
 
magma: Order(TorsionSubgroup(E));
 
sage: E.torsion_order()
 
gp (2.8): elltors(E)[1]
 

Local data at primes of bad reduction

magma: LocalInformation(E);
 
sage: E.local_data()
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(a^{4} + 2 a^{3} - 4 a^{2} - 6 a + 3\right) \) \(41\) \(3\) \(I_{3}\) Split multiplicative \(-1\) \(1\) \(3\) \(3\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p \) except those listed.

prime Image of Galois Representation
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 41.5-c consists of curves linked by isogenies of degree 3.

Base change

This curve is not the base-change of an elliptic curve defined over \(\Q\). It is not a \(\Q\)-curve.