Properties

Label 6.6.453789.1-41.4-c1
Base field \(\Q(\zeta_{21})^+\)
Conductor norm \( 41 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\zeta_{21})^+\)

Generator \(a\), with minimal polynomial \( x^{6} - x^{5} - 6 x^{4} + 6 x^{3} + 8 x^{2} - 8 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -8, 8, 6, -6, -1, 1]))
 
gp: K = nfinit(Polrev([1, -8, 8, 6, -6, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -8, 8, 6, -6, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{5}-5a^{3}+2a^{2}+6a-3\right){x}{y}+\left(a^{5}-4a^{3}+2a^{2}+2a-4\right){y}={x}^{3}+\left(-a^{5}+a^{4}+4a^{3}-4a^{2}-a+2\right){x}^{2}+\left(3a^{5}+2a^{4}-11a^{3}-4a^{2}+8a+1\right){x}+6a^{5}+6a^{4}-24a^{3}-14a^{2}+19a-2\)
sage: E = EllipticCurve([K([-3,6,2,-5,0,1]),K([2,-1,-4,4,1,-1]),K([-4,2,2,-4,0,1]),K([1,8,-4,-11,2,3]),K([-2,19,-14,-24,6,6])])
 
gp: E = ellinit([Polrev([-3,6,2,-5,0,1]),Polrev([2,-1,-4,4,1,-1]),Polrev([-4,2,2,-4,0,1]),Polrev([1,8,-4,-11,2,3]),Polrev([-2,19,-14,-24,6,6])], K);
 
magma: E := EllipticCurve([K![-3,6,2,-5,0,1],K![2,-1,-4,4,1,-1],K![-4,2,2,-4,0,1],K![1,8,-4,-11,2,3],K![-2,19,-14,-24,6,6]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a^5+a^4+6a^3-5a^2-8a+3)\) = \((-a^5+a^4+6a^3-5a^2-8a+3)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 41 \) = \(41\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((a^5-5a^3+2a^2+5a-5)\) = \((-a^5+a^4+6a^3-5a^2-8a+3)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -41 \) = \(-41\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{2317236930}{41} a^{5} + \frac{6745914900}{41} a^{4} + \frac{942380973}{41} a^{3} - \frac{15400001988}{41} a^{2} + \frac{10454504706}{41} a - \frac{1224790551}{41} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-a^{4} + a^{3} + 3 a^{2} - 5 a + 2 : a^{4} + 3 a^{3} - 5 a^{2} - 9 a + 9 : 1\right)$
Height \(0.0041762855719201394771630882797172046147\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.0041762855719201394771630882797172046147 \)
Period: \( 59892.466146077458345329072565085321460 \)
Tamagawa product: \( 1 \)
Torsion order: \(1\)
Leading coefficient: \( 2.22786 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^5+a^4+6a^3-5a^2-8a+3)\) \(41\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 41.4-c consists of curves linked by isogenies of degree 3.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.