Properties

Base field \(\Q(\zeta_{21})^+\)
Label 6.6.453789.1-41.4-b2
Conductor \((41,a^{5} - 5 a^{3} + 2 a^{2} + 5 a - 5)\)
Conductor norm \( 41 \)
CM no
base-change no
Q-curve no
Torsion order \( 1 \)
Rank not available

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Base field \(\Q(\zeta_{21})^+\)

Generator \(a\), with minimal polynomial \( x^{6} - x^{5} - 6 x^{4} + 6 x^{3} + 8 x^{2} - 8 x + 1 \); class number \(1\).

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -8, 8, 6, -6, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^6 - x^5 - 6*x^4 + 6*x^3 + 8*x^2 - 8*x + 1)
 
gp (2.8): K = nfinit(a^6 - a^5 - 6*a^4 + 6*a^3 + 8*a^2 - 8*a + 1);
 

Weierstrass equation

\( y^2 + \left(a^{5} - 5 a^{3} + 2 a^{2} + 6 a - 3\right) x y + \left(a + 1\right) y = x^{3} + \left(-a^{4} - a^{3} + 4 a^{2} + 2 a - 1\right) x^{2} + \left(2 a^{5} - 10 a^{3} + 3 a^{2} + 10 a - 5\right) x + 2 a^{5} - 10 a^{3} + 3 a^{2} + 11 a - 7 \)
magma: E := ChangeRing(EllipticCurve([a^5 - 5*a^3 + 2*a^2 + 6*a - 3, -a^4 - a^3 + 4*a^2 + 2*a - 1, a + 1, 2*a^5 - 10*a^3 + 3*a^2 + 10*a - 5, 2*a^5 - 10*a^3 + 3*a^2 + 11*a - 7]),K);
 
sage: E = EllipticCurve(K, [a^5 - 5*a^3 + 2*a^2 + 6*a - 3, -a^4 - a^3 + 4*a^2 + 2*a - 1, a + 1, 2*a^5 - 10*a^3 + 3*a^2 + 10*a - 5, 2*a^5 - 10*a^3 + 3*a^2 + 11*a - 7])
 
gp (2.8): E = ellinit([a^5 - 5*a^3 + 2*a^2 + 6*a - 3, -a^4 - a^3 + 4*a^2 + 2*a - 1, a + 1, 2*a^5 - 10*a^3 + 3*a^2 + 10*a - 5, 2*a^5 - 10*a^3 + 3*a^2 + 11*a - 7],K)
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

\(\mathfrak{N} \) = \((41,a^{5} - 5 a^{3} + 2 a^{2} + 5 a - 5)\) = \( \left(-a^{5} + a^{4} + 6 a^{3} - 5 a^{2} - 8 a + 3\right) \)
magma: Conductor(E);
 
sage: E.conductor()
 
\(N(\mathfrak{N}) \) = \( 41 \) = \( 41 \)
magma: Norm(Conductor(E));
 
sage: E.conductor().norm()
 
\(\mathfrak{D}\) = \((68921,a^{3} - 3 a + 44284,a^{5} - 5 a^{3} + a^{2} + 5 a + 49761,a^{4} - 4 a^{2} + 51400,a + 6992,a^{2} + 45846)\) = \( \left(-a^{5} + a^{4} + 6 a^{3} - 5 a^{2} - 8 a + 3\right)^{3} \)
magma: Discriminant(E);
 
sage: E.discriminant()
 
gp (2.8): E.disc
 
\(N(\mathfrak{D})\) = \( 68921 \) = \( 41^{3} \)
magma: Norm(Discriminant(E));
 
sage: E.discriminant().norm()
 
gp (2.8): norm(E.disc)
 
\(j\) = \( -\frac{971781867837}{68921} a^{5} - \frac{885653883603}{68921} a^{4} + \frac{4138247022237}{68921} a^{3} + \frac{2079537404544}{68921} a^{2} - \frac{3801129136902}{68921} a + \frac{507608403966}{68921} \)
magma: jInvariant(E);
 
sage: E.j_invariant()
 
gp (2.8): E.j
 
\( \text{End} (E) \) = \(\Z\)   (no Complex Multiplication )
magma: HasComplexMultiplication(E);
 
sage: E.has_cm(), E.cm_discriminant()
 
\( \text{ST} (E) \) = $\mathrm{SU}(2)$

Mordell-Weil group

Rank not available.
magma: Rank(E);
 
sage: E.rank()
 
magma: Generators(E); // includes torsion
 
sage: E.gens()
 

Regulator: not available

magma: Regulator(Generators(E));
 
sage: E.regulator_of_points(E.gens())
 

Torsion subgroup

Structure: Trivial
magma: TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[2]
 
magma: Order(TorsionSubgroup(E));
 
sage: E.torsion_order()
 
gp (2.8): elltors(E)[1]
 

Local data at primes of bad reduction

magma: LocalInformation(E);
 
sage: E.local_data()
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(-a^{5} + a^{4} + 6 a^{3} - 5 a^{2} - 8 a + 3\right) \) \(41\) \(1\) \(I_{3}\) Non-split multiplicative \(1\) \(1\) \(3\) \(3\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p \) except those listed.

prime Image of Galois Representation
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 41.4-b consists of curves linked by isogenies of degree 3.

Base change

This curve is not the base-change of an elliptic curve defined over \(\Q\). It is not a \(\Q\)-curve.