Properties

Base field \(\Q(\zeta_{21})^+\)
Label 6.6.453789.1-41.3-d1
Conductor \((41,-2 a^{5} + 12 a^{3} - 2 a^{2} - 17 a + 5)\)
Conductor norm \( 41 \)
CM no
base-change no
Q-curve no
Torsion order \( 1 \)
Rank not available

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Base field \(\Q(\zeta_{21})^+\)

Generator \(a\), with minimal polynomial \( x^{6} - x^{5} - 6 x^{4} + 6 x^{3} + 8 x^{2} - 8 x + 1 \); class number \(1\).

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -8, 8, 6, -6, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^6 - x^5 - 6*x^4 + 6*x^3 + 8*x^2 - 8*x + 1)
 
gp (2.8): K = nfinit(a^6 - a^5 - 6*a^4 + 6*a^3 + 8*a^2 - 8*a + 1);
 

Weierstrass equation

\( y^2 + \left(a^{4} - 3 a^{2} + a + 1\right) x y + \left(a^{5} - 5 a^{3} + 2 a^{2} + 6 a - 3\right) y = x^{3} + \left(-a^{5} + 6 a^{3} - 8 a\right) x^{2} + \left(6 a^{5} - 4 a^{4} - 36 a^{3} + 23 a^{2} + 49 a - 30\right) x + 37 a^{5} - 35 a^{4} - 231 a^{3} + 201 a^{2} + 333 a - 260 \)
magma: E := ChangeRing(EllipticCurve([a^4 - 3*a^2 + a + 1, -a^5 + 6*a^3 - 8*a, a^5 - 5*a^3 + 2*a^2 + 6*a - 3, 6*a^5 - 4*a^4 - 36*a^3 + 23*a^2 + 49*a - 30, 37*a^5 - 35*a^4 - 231*a^3 + 201*a^2 + 333*a - 260]),K);
 
sage: E = EllipticCurve(K, [a^4 - 3*a^2 + a + 1, -a^5 + 6*a^3 - 8*a, a^5 - 5*a^3 + 2*a^2 + 6*a - 3, 6*a^5 - 4*a^4 - 36*a^3 + 23*a^2 + 49*a - 30, 37*a^5 - 35*a^4 - 231*a^3 + 201*a^2 + 333*a - 260])
 
gp (2.8): E = ellinit([a^4 - 3*a^2 + a + 1, -a^5 + 6*a^3 - 8*a, a^5 - 5*a^3 + 2*a^2 + 6*a - 3, 6*a^5 - 4*a^4 - 36*a^3 + 23*a^2 + 49*a - 30, 37*a^5 - 35*a^4 - 231*a^3 + 201*a^2 + 333*a - 260],K)
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

\(\mathfrak{N} \) = \((41,-2 a^{5} + 12 a^{3} - 2 a^{2} - 17 a + 5)\) = \( \left(a^{5} + a^{4} - 6 a^{3} - 4 a^{2} + 9 a + 1\right) \)
magma: Conductor(E);
 
sage: E.conductor()
 
\(N(\mathfrak{N}) \) = \( 41 \) = \( 41 \)
magma: Norm(Conductor(E));
 
sage: E.conductor().norm()
 
\(\mathfrak{D}\) = \((41,a^{3} - 3 a + 27,a^{5} - 5 a^{3} + a^{2} + 5 a + 35,a^{4} - 4 a^{2} + 24,a + 20,a^{2} + 10)\) = \( \left(a^{5} + a^{4} - 6 a^{3} - 4 a^{2} + 9 a + 1\right) \)
magma: Discriminant(E);
 
sage: E.discriminant()
 
gp (2.8): E.disc
 
\(N(\mathfrak{D})\) = \( 41 \) = \( 41 \)
magma: Norm(Discriminant(E));
 
sage: E.discriminant().norm()
 
gp (2.8): norm(E.disc)
 
\(j\) = \( \frac{358438}{41} a^{5} - \frac{6125244}{41} a^{4} + \frac{5527520}{41} a^{3} + \frac{13015824}{41} a^{2} - \frac{12861139}{41} a + \frac{1612826}{41} \)
magma: jInvariant(E);
 
sage: E.j_invariant()
 
gp (2.8): E.j
 
\( \text{End} (E) \) = \(\Z\)   (no Complex Multiplication )
magma: HasComplexMultiplication(E);
 
sage: E.has_cm(), E.cm_discriminant()
 
\( \text{ST} (E) \) = $\mathrm{SU}(2)$

Mordell-Weil group

Rank not available.
magma: Rank(E);
 
sage: E.rank()
 
magma: Generators(E); // includes torsion
 
sage: E.gens()
 

Regulator: not available

magma: Regulator(Generators(E));
 
sage: E.regulator_of_points(E.gens())
 

Torsion subgroup

Structure: Trivial
magma: TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[2]
 
magma: Order(TorsionSubgroup(E));
 
sage: E.torsion_order()
 
gp (2.8): elltors(E)[1]
 

Local data at primes of bad reduction

magma: LocalInformation(E);
 
sage: E.local_data()
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(a^{5} + a^{4} - 6 a^{3} - 4 a^{2} + 9 a + 1\right) \) \(41\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p \) .

Isogenies and isogeny class

This curve has no rational isogenies. Its isogeny class 41.3-d consists of this curve only.

Base change

This curve is not the base-change of an elliptic curve defined over \(\Q\). It is not a \(\Q\)-curve.