Properties

Label 6.6.453789.1-41.3-c2
Base field \(\Q(\zeta_{21})^+\)
Conductor norm \( 41 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\zeta_{21})^+\)

Generator \(a\), with minimal polynomial \( x^{6} - x^{5} - 6 x^{4} + 6 x^{3} + 8 x^{2} - 8 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -8, 8, 6, -6, -1, 1]))
 
gp: K = nfinit(Polrev([1, -8, 8, 6, -6, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -8, 8, 6, -6, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{4}-4a^{2}+a+3\right){x}{y}+\left(a^{5}-4a^{3}+2a^{2}+3a-3\right){y}={x}^{3}+\left(-a^{4}+a^{3}+5a^{2}-2a-5\right){x}^{2}+\left(a^{5}+2a^{4}-7a^{3}-8a^{2}+11a+5\right){x}-a^{5}-a^{4}+6a^{3}+3a^{2}-9a-1\)
sage: E = EllipticCurve([K([3,1,-4,0,1,0]),K([-5,-2,5,1,-1,0]),K([-3,3,2,-4,0,1]),K([5,11,-8,-7,2,1]),K([-1,-9,3,6,-1,-1])])
 
gp: E = ellinit([Polrev([3,1,-4,0,1,0]),Polrev([-5,-2,5,1,-1,0]),Polrev([-3,3,2,-4,0,1]),Polrev([5,11,-8,-7,2,1]),Polrev([-1,-9,3,6,-1,-1])], K);
 
magma: E := EllipticCurve([K![3,1,-4,0,1,0],K![-5,-2,5,1,-1,0],K![-3,3,2,-4,0,1],K![5,11,-8,-7,2,1],K![-1,-9,3,6,-1,-1]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^5+a^4-6a^3-4a^2+9a+1)\) = \((a^5+a^4-6a^3-4a^2+9a+1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 41 \) = \(41\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((2a^5-12a^3+2a^2+17a-5)\) = \((a^5+a^4-6a^3-4a^2+9a+1)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -41 \) = \(-41\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{5806060965}{41} a^{5} - \frac{9890721675}{41} a^{4} - \frac{17446647213}{41} a^{3} + \frac{38623032765}{41} a^{2} - \frac{19621562553}{41} a + \frac{2132617005}{41} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-a^{5} - a^{4} + 4 a^{3} + 3 a^{2} - 2 a + 2 : 3 a^{5} + 3 a^{4} - 13 a^{3} - 10 a^{2} + 7 a - 3 : 1\right)$
Height \(0.0041762855719201394771630882797172046147\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.0041762855719201394771630882797172046147 \)
Period: \( 59892.466146077458345329072565085321460 \)
Tamagawa product: \( 1 \)
Torsion order: \(1\)
Leading coefficient: \( 2.22786 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^5+a^4-6a^3-4a^2+9a+1)\) \(41\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 41.3-c consists of curves linked by isogenies of degree 3.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.