Properties

Label 6.6.453789.1-41.3-b2
Base field \(\Q(\zeta_{21})^+\)
Conductor norm \( 41 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\zeta_{21})^+\)

Generator \(a\), with minimal polynomial \( x^{6} - x^{5} - 6 x^{4} + 6 x^{3} + 8 x^{2} - 8 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -8, 8, 6, -6, -1, 1]))
 
gp: K = nfinit(Polrev([1, -8, 8, 6, -6, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -8, 8, 6, -6, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{5}+a^{4}-4a^{3}-2a^{2}+3a-1\right){x}{y}+\left(a^{5}+a^{4}-5a^{3}-2a^{2}+5a-2\right){y}={x}^{3}+\left(a^{5}-6a^{3}+a^{2}+9a-3\right){x}^{2}+\left(15a^{5}+15a^{4}-66a^{3}-37a^{2}+68a-10\right){x}+41a^{5}+38a^{4}-177a^{3}-90a^{2}+170a-26\)
sage: E = EllipticCurve([K([-1,3,-2,-4,1,1]),K([-3,9,1,-6,0,1]),K([-2,5,-2,-5,1,1]),K([-10,68,-37,-66,15,15]),K([-26,170,-90,-177,38,41])])
 
gp: E = ellinit([Polrev([-1,3,-2,-4,1,1]),Polrev([-3,9,1,-6,0,1]),Polrev([-2,5,-2,-5,1,1]),Polrev([-10,68,-37,-66,15,15]),Polrev([-26,170,-90,-177,38,41])], K);
 
magma: E := EllipticCurve([K![-1,3,-2,-4,1,1],K![-3,9,1,-6,0,1],K![-2,5,-2,-5,1,1],K![-10,68,-37,-66,15,15],K![-26,170,-90,-177,38,41]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^5+a^4-6a^3-4a^2+9a+1)\) = \((a^5+a^4-6a^3-4a^2+9a+1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 41 \) = \(41\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((2a^5-12a^3+2a^2+17a-5)\) = \((a^5+a^4-6a^3-4a^2+9a+1)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -41 \) = \(-41\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{5806060965}{41} a^{5} - \frac{9890721675}{41} a^{4} - \frac{17446647213}{41} a^{3} + \frac{38623032765}{41} a^{2} - \frac{19621562553}{41} a + \frac{2132617005}{41} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 798.28831229797171681793933071028557799 \)
Tamagawa product: \( 1 \)
Torsion order: \(1\)
Leading coefficient: \( 1.18504 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^5+a^4-6a^3-4a^2+9a+1)\) \(41\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 41.3-b consists of curves linked by isogenies of degree 3.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.