Base field \(\Q(\zeta_{21})^+\)
Generator \(a\), with minimal polynomial \( x^{6} - x^{5} - 6 x^{4} + 6 x^{3} + 8 x^{2} - 8 x + 1 \); class number \(1\).
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -8, 8, 6, -6, -1, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^6 - x^5 - 6*x^4 + 6*x^3 + 8*x^2 - 8*x + 1)
gp (2.8): K = nfinit(a^6 - a^5 - 6*a^4 + 6*a^3 + 8*a^2 - 8*a + 1);
Weierstrass equation
magma: E := ChangeRing(EllipticCurve([a^3 - 2*a + 1, a^5 - 5*a^3 + 6*a - 1, a^4 - 4*a^2 + 3, 4*a^5 + 3*a^4 - 20*a^3 - 8*a^2 + 19*a - 4, 28*a^5 + 18*a^4 - 137*a^3 - 58*a^2 + 124*a - 19]),K);
sage: E = EllipticCurve(K, [a^3 - 2*a + 1, a^5 - 5*a^3 + 6*a - 1, a^4 - 4*a^2 + 3, 4*a^5 + 3*a^4 - 20*a^3 - 8*a^2 + 19*a - 4, 28*a^5 + 18*a^4 - 137*a^3 - 58*a^2 + 124*a - 19])
gp (2.8): E = ellinit([a^3 - 2*a + 1, a^5 - 5*a^3 + 6*a - 1, a^4 - 4*a^2 + 3, 4*a^5 + 3*a^4 - 20*a^3 - 8*a^2 + 19*a - 4, 28*a^5 + 18*a^4 - 137*a^3 - 58*a^2 + 124*a - 19],K)
This is a global minimal model.
sage: E.is_global_minimal_model()
Invariants
| \(\mathfrak{N} \) | = | \((41,-a^{5} + 6 a^{3} - a^{2} - 7 a + 2)\) | = | \( \left(a^{5} - 6 a^{3} + a^{2} + 7 a - 2\right) \) |
| magma: Conductor(E);
sage: E.conductor()
| ||||
| \(N(\mathfrak{N}) \) | = | \( 41 \) | = | \( 41 \) |
| magma: Norm(Conductor(E));
sage: E.conductor().norm()
| ||||
| \(\mathfrak{D}\) | = | \((41,a^{3} - 3 a + 27,a^{5} - 5 a^{3} + a^{2} + 5 a + 35,a^{4} - 4 a^{2} + 35,a + 10,a^{2} + 23)\) | = | \( \left(a^{5} - 6 a^{3} + a^{2} + 7 a - 2\right) \) |
| magma: Discriminant(E);
sage: E.discriminant()
gp (2.8): E.disc
| ||||
| \(N(\mathfrak{D})\) | = | \( 41 \) | = | \( 41 \) |
| magma: Norm(Discriminant(E));
sage: E.discriminant().norm()
gp (2.8): norm(E.disc)
| ||||
| \(j\) | = | \( \frac{12961040607}{41} a^{5} + \frac{9890721675}{41} a^{4} - \frac{57231718290}{41} a^{3} - \frac{19855931193}{41} a^{2} + \frac{55985643342}{41} a - \frac{13499009721}{41} \) | ||
| magma: jInvariant(E);
sage: E.j_invariant()
gp (2.8): E.j
| ||||
| \( \text{End} (E) \) | = | \(\Z\) | (no Complex Multiplication ) | |
| magma: HasComplexMultiplication(E);
sage: E.has_cm(), E.cm_discriminant()
| ||||
| \( \text{ST} (E) \) | = | $\mathrm{SU}(2)$ | ||
Mordell-Weil group
Rank not available.magma: Rank(E);
sage: E.rank()
magma: Generators(E); // includes torsion
sage: E.gens()
Regulator: not available
magma: Regulator(Generators(E));
sage: E.regulator_of_points(E.gens())
Torsion subgroup
| Structure: | Trivial |
|---|---|
| magma: TorsionSubgroup(E);
sage: E.torsion_subgroup().gens()
gp (2.8): elltors(E)[2]
| |
| magma: Order(TorsionSubgroup(E));
sage: E.torsion_order()
gp (2.8): elltors(E)[1]
| |
Local data at primes of bad reduction
magma: LocalInformation(E);
sage: E.local_data()
| prime | Norm | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(\mathfrak{N}\)) | ord(\(\mathfrak{D}\)) | ord\((j)_{-}\) |
|---|---|---|---|---|---|---|---|---|
| \( \left(a^{5} - 6 a^{3} + a^{2} + 7 a - 2\right) \) | \(41\) | \(1\) | \(I_{1}\) | Non-split multiplicative | \(1\) | \(1\) | \(1\) | \(1\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p \) except those listed.
| prime | Image of Galois Representation |
|---|---|
| \(3\) | 3B |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
3.
Its isogeny class
41.1-b
consists of curves linked by isogenies of
degree 3.