Properties

Label 6.6.453789.1-41.1-a1
Base field \(\Q(\zeta_{21})^+\)
Conductor norm \( 41 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\zeta_{21})^+\)

Generator \(a\), with minimal polynomial \( x^{6} - x^{5} - 6 x^{4} + 6 x^{3} + 8 x^{2} - 8 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -8, 8, 6, -6, -1, 1]))
 
gp: K = nfinit(Polrev([1, -8, 8, 6, -6, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -8, 8, 6, -6, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{3}+a^{2}-2a-1\right){x}{y}+\left(a^{4}+a^{3}-3a^{2}-3a+1\right){y}={x}^{3}+\left(-a^{5}+6a^{3}-a^{2}-7a+2\right){x}^{2}+\left(a^{4}+a^{3}-a-3\right){x}+2a^{5}+2a^{4}-7a^{3}-5a^{2}+5a+1\)
sage: E = EllipticCurve([K([-1,-2,1,1,0,0]),K([2,-7,-1,6,0,-1]),K([1,-3,-3,1,1,0]),K([-3,-1,0,1,1,0]),K([1,5,-5,-7,2,2])])
 
gp: E = ellinit([Polrev([-1,-2,1,1,0,0]),Polrev([2,-7,-1,6,0,-1]),Polrev([1,-3,-3,1,1,0]),Polrev([-3,-1,0,1,1,0]),Polrev([1,5,-5,-7,2,2])], K);
 
magma: E := EllipticCurve([K![-1,-2,1,1,0,0],K![2,-7,-1,6,0,-1],K![1,-3,-3,1,1,0],K![-3,-1,0,1,1,0],K![1,5,-5,-7,2,2]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^5-6a^3+a^2+7a-2)\) = \((a^5-6a^3+a^2+7a-2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 41 \) = \(41\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((a^5-6a^3+a^2+7a-2)\) = \((a^5-6a^3+a^2+7a-2)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -41 \) = \(-41\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{18790953}{41} a^{5} + \frac{6125244}{41} a^{4} + \frac{114705520}{41} a^{3} - \frac{31448339}{41} a^{2} - \frac{163512831}{41} a + \frac{24344025}{41} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-a^{3} + 2 a : a^{5} + a^{4} - 5 a^{3} - 2 a^{2} + 6 a : 1\right)$
Height \(0.00089833144183606974788248692094896776444\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.00089833144183606974788248692094896776444 \)
Period: \( 258775.15941261451653517232092170104137 \)
Tamagawa product: \( 1 \)
Torsion order: \(1\)
Leading coefficient: \( 2.07054 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^5-6a^3+a^2+7a-2)\) \(41\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) .

Isogenies and isogeny class

This curve has no rational isogenies. Its isogeny class 41.1-a consists of this curve only.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.