Properties

Base field \(\Q(\zeta_{21})^+\)
Label 6.6.453789.1-1.1-a4
Conductor \((1)\)
Conductor norm \( 1 \)
CM yes (\(-147\))
base-change no
Q-curve yes
Torsion order \( 1 \)
Rank not available

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Base field \(\Q(\zeta_{21})^+\)

Generator \(a\), with minimal polynomial \( x^{6} - x^{5} - 6 x^{4} + 6 x^{3} + 8 x^{2} - 8 x + 1 \); class number \(1\).

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -8, 8, 6, -6, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^6 - x^5 - 6*x^4 + 6*x^3 + 8*x^2 - 8*x + 1)
 
gp (2.8): K = nfinit(a^6 - a^5 - 6*a^4 + 6*a^3 + 8*a^2 - 8*a + 1);
 

Weierstrass equation

\( y^2 + \left(a^{5} - 5 a^{3} + a^{2} + 5 a - 1\right) y = x^{3} + \left(-a^{5} + a^{4} + 6 a^{3} - 4 a^{2} - 9 a + 1\right) x^{2} + \left(-188 a^{5} + 589 a^{4} + 447 a^{3} - 2545 a^{2} + 1720 a - 203\right) x - 6938 a^{5} + 17357 a^{4} + 18336 a^{3} - 72391 a^{2} + 45500 a - 5253 \)
magma: E := ChangeRing(EllipticCurve([0, -a^5 + a^4 + 6*a^3 - 4*a^2 - 9*a + 1, a^5 - 5*a^3 + a^2 + 5*a - 1, -188*a^5 + 589*a^4 + 447*a^3 - 2545*a^2 + 1720*a - 203, -6938*a^5 + 17357*a^4 + 18336*a^3 - 72391*a^2 + 45500*a - 5253]),K);
 
sage: E = EllipticCurve(K, [0, -a^5 + a^4 + 6*a^3 - 4*a^2 - 9*a + 1, a^5 - 5*a^3 + a^2 + 5*a - 1, -188*a^5 + 589*a^4 + 447*a^3 - 2545*a^2 + 1720*a - 203, -6938*a^5 + 17357*a^4 + 18336*a^3 - 72391*a^2 + 45500*a - 5253])
 
gp (2.8): E = ellinit([0, -a^5 + a^4 + 6*a^3 - 4*a^2 - 9*a + 1, a^5 - 5*a^3 + a^2 + 5*a - 1, -188*a^5 + 589*a^4 + 447*a^3 - 2545*a^2 + 1720*a - 203, -6938*a^5 + 17357*a^4 + 18336*a^3 - 72391*a^2 + 45500*a - 5253],K)
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

\(\mathfrak{N} \) = \((1)\) = \((1)\)
magma: Conductor(E);
 
sage: E.conductor()
 
\(N(\mathfrak{N}) \) = \( 1 \) = 1
magma: Norm(Conductor(E));
 
sage: E.conductor().norm()
 
\(\mathfrak{D}\) = \((1)\) = \((1)\)
magma: Discriminant(E);
 
sage: E.discriminant()
 
gp (2.8): E.disc
 
\(N(\mathfrak{D})\) = \( 1 \) = 1
magma: Norm(Discriminant(E));
 
sage: E.discriminant().norm()
 
gp (2.8): norm(E.disc)
 
\(j\) = \( 7604567359488000 a^{5} + 7604567359488000 a^{4} - 38022836797440000 a^{3} - 30418269437952000 a^{2} + 45627404156928000 a - 6017401737216000 \)
magma: jInvariant(E);
 
sage: E.j_invariant()
 
gp (2.8): E.j
 
\( \text{End} (E) \) = \(\Z[(1+\sqrt{-147})/2]\)   ( Complex Multiplication )
magma: HasComplexMultiplication(E);
 
sage: E.has_cm(), E.cm_discriminant()
 
\( \text{ST} (E) \) = $N(\mathrm{U}(1))$

Mordell-Weil group

Rank not available.
magma: Rank(E);
 
sage: E.rank()
 
magma: Generators(E); // includes torsion
 
sage: E.gens()
 

Regulator: not available

magma: Regulator(Generators(E));
 
sage: E.regulator_of_points(E.gens())
 

Torsion subgroup

Structure: Trivial
magma: TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[2]
 
magma: Order(TorsionSubgroup(E));
 
sage: E.torsion_order()
 
gp (2.8): elltors(E)[1]
 

Local data at primes of bad reduction

magma: LocalInformation(E);
 
sage: E.local_data()
 
No primes of bad reduction.

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p \) except those listed.

prime Image of Galois Representation
\(7\) 7B.1.6[3]

For all other primes \(p\), the image is a Borel subgroup if \(p=3\), the normalizer of a split Cartan subgroup if \(\left(\frac{ -3 }{p}\right)=+1\) or the normalizer of a nonsplit Cartan subgroup if \(\left(\frac{ -3 }{p}\right)=-1\).

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3, 7, 21, 49 and 147.
Its isogeny class 1.1-a consists of curves linked by isogenies of degrees dividing 147.

Base change

This curve is not the base-change of an elliptic curve defined over \(\Q\). It is a \(\Q\)-curve.