Properties

Base field \(\Q(\zeta_{21})^+\)
Label 6.6.453789.1-1.1-a
Conductor 1.1
Rank not recorded

Related objects

Learn more about

Base field \(\Q(\zeta_{21})^+\)

Generator \(a\), with minimal polynomial \( x^{6} - x^{5} - 6 x^{4} + 6 x^{3} + 8 x^{2} - 8 x + 1 \); class number \(1\).

Elliptic curves in class 1.1-a over \(\Q(\zeta_{21})^+\)

Isogeny class 1.1-a contains 6 curves linked by isogenies of degrees dividing 147.

Curve label Weierstrass Coefficients
1.1-a1 \( \bigl[0\) , \( -a^{4} + 3 a^{2} - a - 1\) , \( a^{5} - 4 a^{3} + a^{2} + 2 a - 2\) , \( 171 a^{5} + 81 a^{4} - 934 a^{3} - 192 a^{2} + 1093 a - 400\) , \( -1717 a^{5} - 882 a^{4} + 9032 a^{3} + 2384 a^{2} - 9721 a + 2928\bigr] \)
1.1-a2 \( \bigl[0\) , \( a^{4} - 3 a^{2} + a + 1\) , \( a^{5} - 4 a^{3} + a^{2} + 2 a - 2\) , \( 681 a^{5} - 1179 a^{4} - 4774 a^{3} + 5988 a^{2} + 7513 a - 6850\) , \( 23972 a^{5} - 32308 a^{4} - 159295 a^{3} + 171151 a^{2} + 242140 a - 203233\bigr] \)
1.1-a3 \( \bigl[0\) , \( a^{4} - 3 a^{2} + a + 1\) , \( a^{5} - 4 a^{3} + a^{2} + 2 a - 2\) , \( 131 a^{5} - 79 a^{4} - 814 a^{3} + 488 a^{2} + 1133 a - 800\) , \( -1218 a^{5} + 802 a^{4} + 7465 a^{3} - 4959 a^{2} - 10420 a + 7417\bigr] \)
1.1-a4 \( \bigl[0\) , \( -a^{5} + a^{4} + 6 a^{3} - 4 a^{2} - 9 a + 1\) , \( a^{5} - 5 a^{3} + a^{2} + 5 a - 1\) , \( -188 a^{5} + 589 a^{4} + 447 a^{3} - 2545 a^{2} + 1720 a - 203\) , \( -6938 a^{5} + 17357 a^{4} + 18336 a^{3} - 72391 a^{2} + 45500 a - 5253\bigr] \)
1.1-a5 \( \bigl[0\) , \( a^{4} - 3 a^{2} + a + 1\) , \( a^{5} - 4 a^{3} + a^{2} + 2 a - 2\) , \( a^{5} + a^{4} - 4 a^{3} - 2 a^{2} + 3 a\) , \( a^{5} - 6 a^{3} + 2 a^{2} + 9 a - 6\bigr] \)
1.1-a6 \( \bigl[0\) , \( -a^{5} + a^{4} + 6 a^{3} - 4 a^{2} - 9 a + 1\) , \( a^{5} - 5 a^{3} + a^{2} + 5 a - 1\) , \( 2 a^{5} - a^{4} - 13 a^{3} + 5 a^{2} + 20 a - 3\) , \( -2 a^{5} + a^{4} + 11 a^{3} - 5 a^{2} - 13 a + 2\bigr] \)

Rank

Rank not yet determined.

Isogeny matrix

\(\left(\begin{array}{rrrrrr} 1 & 147 & 3 & 49 & 21 & 7 \\ 147 & 1 & 49 & 3 & 7 & 21 \\ 3 & 49 & 1 & 147 & 7 & 21 \\ 49 & 3 & 147 & 1 & 21 & 7 \\ 21 & 7 & 7 & 21 & 1 & 3 \\ 7 & 21 & 21 & 7 & 3 & 1 \end{array}\right)\)

Isogeny graph