Properties

Label 6.6.434581.1-71.2-a4
Base field 6.6.434581.1
Conductor norm \( 71 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 6.6.434581.1

Generator \(a\), with minimal polynomial \( x^{6} - 2 x^{5} - 4 x^{4} + 5 x^{3} + 4 x^{2} - 2 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, -2, 4, 5, -4, -2, 1]))
 
gp: K = nfinit(Polrev([-1, -2, 4, 5, -4, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -2, 4, 5, -4, -2, 1]);
 

Weierstrass equation

\({y}^2+a{x}{y}+\left(3a^{5}-7a^{4}-8a^{3}+15a^{2}+a-4\right){y}={x}^{3}+\left(-a^{5}+2a^{4}+4a^{3}-4a^{2}-4a+2\right){x}^{2}+\left(20a^{5}-51a^{4}-52a^{3}+120a^{2}+55a-84\right){x}+251a^{5}-630a^{4}-644a^{3}+1463a^{2}+269a-526\)
sage: E = EllipticCurve([K([0,1,0,0,0,0]),K([2,-4,-4,4,2,-1]),K([-4,1,15,-8,-7,3]),K([-84,55,120,-52,-51,20]),K([-526,269,1463,-644,-630,251])])
 
gp: E = ellinit([Polrev([0,1,0,0,0,0]),Polrev([2,-4,-4,4,2,-1]),Polrev([-4,1,15,-8,-7,3]),Polrev([-84,55,120,-52,-51,20]),Polrev([-526,269,1463,-644,-630,251])], K);
 
magma: E := EllipticCurve([K![0,1,0,0,0,0],K![2,-4,-4,4,2,-1],K![-4,1,15,-8,-7,3],K![-84,55,120,-52,-51,20],K![-526,269,1463,-644,-630,251]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^3-3a)\) = \((a^3-3a)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 71 \) = \(71\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-a^4+2a^3+a^2-a+4)\) = \((a^3-3a)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -5041 \) = \(-71^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{2427847058697256047703464284364}{5041} a^{5} - \frac{3213439376084993538620895804626}{5041} a^{4} - \frac{11885036707571320938161451911154}{5041} a^{3} + \frac{4099907686861892112740975364149}{5041} a^{2} + \frac{12484665412014987227895045256073}{5041} a + \frac{3589236914441632306388327741777}{5041} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(5 a^{5} - 12 a^{4} - 14 a^{3} + \frac{111}{4} a^{2} + 6 a - 8 : -\frac{1}{2} a^{5} + \frac{1}{2} a^{4} + \frac{21}{8} a^{3} - \frac{1}{2} a^{2} - \frac{3}{2} a - \frac{1}{2} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 1976.1350923159349321874947479863555549 \)
Tamagawa product: \( 2 \)
Torsion order: \(2\)
Leading coefficient: \( 1.49883 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^3-3a)\) \(71\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 71.2-a consists of curves linked by isogenies of degrees dividing 6.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.