Properties

Label 6.6.434581.1-71.1-a4
Base field 6.6.434581.1
Conductor norm \( 71 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 6.6.434581.1

Generator \(a\), with minimal polynomial \( x^{6} - 2 x^{5} - 4 x^{4} + 5 x^{3} + 4 x^{2} - 2 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, -2, 4, 5, -4, -2, 1]))
 
gp: K = nfinit(Polrev([-1, -2, 4, 5, -4, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -2, 4, 5, -4, -2, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{5}-2a^{4}-3a^{3}+3a^{2}+a+1\right){x}{y}+\left(a^{5}-2a^{4}-3a^{3}+3a^{2}+a\right){y}={x}^{3}+\left(-2a^{5}+5a^{4}+5a^{3}-11a^{2}-a+2\right){x}^{2}+\left(-97a^{5}+157a^{4}+417a^{3}-259a^{2}-387a-94\right){x}-599a^{5}+877a^{4}+2755a^{3}-1288a^{2}-2719a-723\)
sage: E = EllipticCurve([K([1,1,3,-3,-2,1]),K([2,-1,-11,5,5,-2]),K([0,1,3,-3,-2,1]),K([-94,-387,-259,417,157,-97]),K([-723,-2719,-1288,2755,877,-599])])
 
gp: E = ellinit([Polrev([1,1,3,-3,-2,1]),Polrev([2,-1,-11,5,5,-2]),Polrev([0,1,3,-3,-2,1]),Polrev([-94,-387,-259,417,157,-97]),Polrev([-723,-2719,-1288,2755,877,-599])], K);
 
magma: E := EllipticCurve([K![1,1,3,-3,-2,1],K![2,-1,-11,5,5,-2],K![0,1,3,-3,-2,1],K![-94,-387,-259,417,157,-97],K![-723,-2719,-1288,2755,877,-599]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((2a^5-6a^4-4a^3+17a^2-a-6)\) = \((2a^5-6a^4-4a^3+17a^2-a-6)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 71 \) = \(71\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((5a^5-12a^4-15a^3+29a^2+9a-4)\) = \((2a^5-6a^4-4a^3+17a^2-a-6)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -5041 \) = \(-71^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{7067022792014335}{5041} a^{5} + \frac{24612619416466217}{5041} a^{4} - \frac{8158647124759995}{5041} a^{3} - \frac{23426232526371070}{5041} a^{2} + \frac{6414105640727850}{5041} a + \frac{4812827440073893}{5041} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{3}{2} a^{5} - \frac{31}{4} a^{4} + \frac{17}{4} a^{3} + \frac{89}{4} a^{2} - \frac{61}{4} a - 10 : -\frac{11}{4} a^{5} + \frac{41}{4} a^{4} - \frac{1}{2} a^{3} - \frac{211}{8} a^{2} + \frac{115}{8} a + \frac{39}{4} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 1816.7612665449279146037908700641215333 \)
Tamagawa product: \( 2 \)
Torsion order: \(2\)
Leading coefficient: \( 1.37795 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((2a^5-6a^4-4a^3+17a^2-a-6)\) \(71\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 71.1-a consists of curves linked by isogenies of degrees dividing 6.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.