Properties

Label 6.6.434581.1-71.1-a3
Base field 6.6.434581.1
Conductor norm \( 71 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 6.6.434581.1

Generator \(a\), with minimal polynomial \( x^{6} - 2 x^{5} - 4 x^{4} + 5 x^{3} + 4 x^{2} - 2 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, -2, 4, 5, -4, -2, 1]))
 
gp: K = nfinit(Polrev([-1, -2, 4, 5, -4, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -2, 4, 5, -4, -2, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{5}-2a^{4}-4a^{3}+5a^{2}+3a-2\right){x}{y}+\left(2a^{5}-4a^{4}-6a^{3}+7a^{2}+2a-1\right){y}={x}^{3}+\left(a^{5}-3a^{4}-a^{3}+6a^{2}-3a-2\right){x}^{2}+\left(10a^{5}-30a^{4}-10a^{3}+51a^{2}-a-14\right){x}-15a^{5}+55a^{4}-31a^{3}-39a^{2}+17a+6\)
sage: E = EllipticCurve([K([-2,3,5,-4,-2,1]),K([-2,-3,6,-1,-3,1]),K([-1,2,7,-6,-4,2]),K([-14,-1,51,-10,-30,10]),K([6,17,-39,-31,55,-15])])
 
gp: E = ellinit([Polrev([-2,3,5,-4,-2,1]),Polrev([-2,-3,6,-1,-3,1]),Polrev([-1,2,7,-6,-4,2]),Polrev([-14,-1,51,-10,-30,10]),Polrev([6,17,-39,-31,55,-15])], K);
 
magma: E := EllipticCurve([K![-2,3,5,-4,-2,1],K![-2,-3,6,-1,-3,1],K![-1,2,7,-6,-4,2],K![-14,-1,51,-10,-30,10],K![6,17,-39,-31,55,-15]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((2a^5-6a^4-4a^3+17a^2-a-6)\) = \((2a^5-6a^4-4a^3+17a^2-a-6)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 71 \) = \(71\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((44a^5-122a^4-123a^3+345a^2+64a-92)\) = \((2a^5-6a^4-4a^3+17a^2-a-6)^{6}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -128100283921 \) = \(-71^{6}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{14623190787592690023}{128100283921} a^{5} + \frac{9262831648934631201}{128100283921} a^{4} - \frac{34215233218956422760}{128100283921} a^{3} - \frac{17202576339060202666}{128100283921} a^{2} + \frac{13171892585884276804}{128100283921} a + \frac{5541195868726527748}{128100283921} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{1}{2} a^{5} + \frac{7}{4} a^{4} - \frac{1}{2} a^{3} - \frac{11}{4} a^{2} + \frac{7}{4} a + \frac{1}{2} : -\frac{7}{8} a^{5} + \frac{3}{2} a^{4} + 3 a^{3} - \frac{21}{8} a^{2} - \frac{7}{8} a - \frac{1}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 1816.7612665449279146037908700641215333 \)
Tamagawa product: \( 2 \)
Torsion order: \(2\)
Leading coefficient: \( 1.37795 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((2a^5-6a^4-4a^3+17a^2-a-6)\) \(71\) \(2\) \(I_{6}\) Non-split multiplicative \(1\) \(1\) \(6\) \(6\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 71.1-a consists of curves linked by isogenies of degrees dividing 6.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.