Properties

Label 6.6.434581.1-29.2-a2
Base field 6.6.434581.1
Conductor norm \( 29 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 6.6.434581.1

Generator \(a\), with minimal polynomial \( x^{6} - 2 x^{5} - 4 x^{4} + 5 x^{3} + 4 x^{2} - 2 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, -2, 4, 5, -4, -2, 1]))
 
gp: K = nfinit(Polrev([-1, -2, 4, 5, -4, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -2, 4, 5, -4, -2, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{5}-a^{4}-5a^{3}+5a+1\right){x}{y}+\left(a^{5}-2a^{4}-3a^{3}+4a^{2}-1\right){y}={x}^{3}+\left(-a^{5}+3a^{4}+2a^{3}-8a^{2}-a+3\right){x}^{2}+\left(130a^{5}-309a^{4}-397a^{3}+796a^{2}+211a-347\right){x}+980a^{5}-2356a^{4}-3009a^{3}+6089a^{2}+1599a-2603\)
sage: E = EllipticCurve([K([1,5,0,-5,-1,1]),K([3,-1,-8,2,3,-1]),K([-1,0,4,-3,-2,1]),K([-347,211,796,-397,-309,130]),K([-2603,1599,6089,-3009,-2356,980])])
 
gp: E = ellinit([Polrev([1,5,0,-5,-1,1]),Polrev([3,-1,-8,2,3,-1]),Polrev([-1,0,4,-3,-2,1]),Polrev([-347,211,796,-397,-309,130]),Polrev([-2603,1599,6089,-3009,-2356,980])], K);
 
magma: E := EllipticCurve([K![1,5,0,-5,-1,1],K![3,-1,-8,2,3,-1],K![-1,0,4,-3,-2,1],K![-347,211,796,-397,-309,130],K![-2603,1599,6089,-3009,-2356,980]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((3a^5-7a^4-9a^3+17a^2+3a-5)\) = \((3a^5-7a^4-9a^3+17a^2+3a-5)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 29 \) = \(29\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((960a^5-5343a^4+3831a^3+11965a^2-8450a-2262)\) = \((3a^5-7a^4-9a^3+17a^2+3a-5)^{15}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 8629188747598184440949 \) = \(29^{15}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{49517926748131685406029400211528}{8629188747598184440949} a^{5} - \frac{118018847388936022519470695147732}{8629188747598184440949} a^{4} - \frac{152677702645431525968546689515834}{8629188747598184440949} a^{3} + \frac{305537605996119022369549489960117}{8629188747598184440949} a^{2} + \frac{81336262405475238261621776760232}{8629188747598184440949} a - \frac{129867942024508507713764721191699}{8629188747598184440949} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 1.4813316253083485410290468295415282899 \)
Tamagawa product: \( 1 \)
Torsion order: \(1\)
Leading coefficient: \( 1.40442 \)
Analytic order of Ш: \( 625 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((3a^5-7a^4-9a^3+17a^2+3a-5)\) \(29\) \(1\) \(I_{15}\) Non-split multiplicative \(1\) \(1\) \(15\) \(15\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B
\(5\) 5B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3, 5 and 15.
Its isogeny class 29.2-a consists of curves linked by isogenies of degrees dividing 15.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.