Properties

Label 6.6.434581.1-29.1-a3
Base field 6.6.434581.1
Conductor norm \( 29 \)
CM no
Base change no
Q-curve no
Torsion order \( 5 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 6.6.434581.1

Generator \(a\), with minimal polynomial \( x^{6} - 2 x^{5} - 4 x^{4} + 5 x^{3} + 4 x^{2} - 2 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, -2, 4, 5, -4, -2, 1]))
 
gp: K = nfinit(Polrev([-1, -2, 4, 5, -4, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -2, 4, 5, -4, -2, 1]);
 

Weierstrass equation

\({y}^2+\left(3a^{5}-6a^{4}-10a^{3}+12a^{2}+4a-2\right){x}{y}+\left(a^{5}-2a^{4}-3a^{3}+4a^{2}-1\right){y}={x}^{3}+\left(a^{5}-3a^{4}-a^{3}+7a^{2}-2a-2\right){x}^{2}+\left(-29a^{5}+67a^{4}+95a^{3}-175a^{2}-56a+79\right){x}-60a^{5}+141a^{4}+189a^{3}-364a^{2}-105a+158\)
sage: E = EllipticCurve([K([-2,4,12,-10,-6,3]),K([-2,-2,7,-1,-3,1]),K([-1,0,4,-3,-2,1]),K([79,-56,-175,95,67,-29]),K([158,-105,-364,189,141,-60])])
 
gp: E = ellinit([Polrev([-2,4,12,-10,-6,3]),Polrev([-2,-2,7,-1,-3,1]),Polrev([-1,0,4,-3,-2,1]),Polrev([79,-56,-175,95,67,-29]),Polrev([158,-105,-364,189,141,-60])], K);
 
magma: E := EllipticCurve([K![-2,4,12,-10,-6,3],K![-2,-2,7,-1,-3,1],K![-1,0,4,-3,-2,1],K![79,-56,-175,95,67,-29],K![158,-105,-364,189,141,-60]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^4-a^3-4a^2+a+3)\) = \((a^4-a^3-4a^2+a+3)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 29 \) = \(29\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((a^2-a-3)\) = \((a^4-a^3-4a^2+a+3)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 29 \) = \(29\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{29493090}{29} a^{5} - \frac{103408610}{29} a^{4} + \frac{36642858}{29} a^{3} + \frac{97274296}{29} a^{2} - \frac{30413785}{29} a - \frac{21201649}{29} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/5\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(a^{4} - 2 a^{3} - 3 a^{2} + 3 a + 1 : 6 a^{5} - 14 a^{4} - 18 a^{3} + 34 a^{2} + 8 a - 13 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 23145.806645442945953578856711586379529 \)
Tamagawa product: \( 1 \)
Torsion order: \(5\)
Leading coefficient: \( 1.40442 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^4-a^3-4a^2+a+3)\) \(29\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B
\(5\) 5B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3, 5 and 15.
Its isogeny class 29.1-a consists of curves linked by isogenies of degrees dividing 15.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.