Properties

Label 6.6.371293.1-79.3-d6
Base field \(\Q(\zeta_{13})^+\)
Conductor norm \( 79 \)
CM no
Base change no
Q-curve no
Torsion order \( 4 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\zeta_{13})^+\)

Generator \(a\), with minimal polynomial \( x^{6} - x^{5} - 5 x^{4} + 4 x^{3} + 6 x^{2} - 3 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, -3, 6, 4, -5, -1, 1]))
 
gp: K = nfinit(Polrev([-1, -3, 6, 4, -5, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -3, 6, 4, -5, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{5}-5a^{3}+5a+1\right){x}{y}+a{y}={x}^{3}+\left(-a^{5}+a^{4}+4a^{3}-4a^{2}-a+3\right){x}^{2}+\left(41a^{5}+18a^{4}-173a^{3}-86a^{2}+95a+16\right){x}+259a^{5}+137a^{4}-1094a^{3}-644a^{2}+601a+171\)
sage: E = EllipticCurve([K([1,5,0,-5,0,1]),K([3,-1,-4,4,1,-1]),K([0,1,0,0,0,0]),K([16,95,-86,-173,18,41]),K([171,601,-644,-1094,137,259])])
 
gp: E = ellinit([Polrev([1,5,0,-5,0,1]),Polrev([3,-1,-4,4,1,-1]),Polrev([0,1,0,0,0,0]),Polrev([16,95,-86,-173,18,41]),Polrev([171,601,-644,-1094,137,259])], K);
 
magma: E := EllipticCurve([K![1,5,0,-5,0,1],K![3,-1,-4,4,1,-1],K![0,1,0,0,0,0],K![16,95,-86,-173,18,41],K![171,601,-644,-1094,137,259]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Mordell-Weil group structure

\(\Z/{2}\Z \oplus \Z/{2}\Z\)

Mordell-Weil generators

$P$$\hat{h}(P)$Order
$\left(4 a^{5} - a^{4} - 18 a^{3} + 2 a^{2} + 14 a - 2 : a^{4} + a^{3} - 3 a^{2} - 4 a - 1 : 1\right)$$0$$2$
$\left(\frac{1}{2} a^{5} + a^{4} - \frac{5}{4} a^{3} - 4 a^{2} - \frac{9}{4} a + \frac{1}{4} : \frac{7}{4} a^{5} - \frac{69}{8} a^{3} - \frac{9}{8} a^{2} + \frac{67}{8} a + \frac{17}{8} : 1\right)$$0$$2$

Invariants

Conductor: $\frak{N}$ = \((a^5-4a^3+3a-2)\) = \((a^5-4a^3+3a-2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: $N(\frak{N})$ = \( 79 \) = \(79\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: $\Delta$ = $49a^5-22a^4-190a^3+69a^2+53a-70$
Discriminant ideal: $\frak{D}_{\mathrm{min}} = (\Delta)$ = \((49a^5-22a^4-190a^3+69a^2+53a-70)\) = \((a^5-4a^3+3a-2)^{6}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ = \( 243087455521 \) = \(79^{6}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: $j$ = \( \frac{9864017269525778498272880}{243087455521} a^{5} - \frac{2868359809586230613384259}{243087455521} a^{4} - \frac{51354355161968675541349721}{243087455521} a^{3} + \frac{3035058454072124864303972}{243087455521} a^{2} + \frac{61336596742421539337407014}{243087455521} a + \frac{13908462111951939654564430}{243087455521} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: $\mathrm{End}(E)$ = \(\Z\)   
Geometric endomorphism ring: $\mathrm{End}(E_{\overline{\Q}})$ = \(\Z\)    (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{ST}(E)$ = $\mathrm{SU}(2)$

BSD invariants

Analytic rank: $r_{\mathrm{an}}$= \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: $r$ = \(0\)
Regulator: $\mathrm{Reg}(E/K)$ = \( 1 \)
Néron-Tate Regulator: $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ = \( 1 \)
Global period: $\Omega(E/K)$ \( 1620.3151885621828829270559259160438049 \)
Tamagawa product: $\prod_{\frak{p}}c_{\frak{p}}$= \( 2 \)
Torsion order: $\#E(K)_{\mathrm{tor}}$= \(4\)
Special value: $L^{(r)}(E/K,1)/r!$ \( 1.32957 \)
Analytic order of Ш: Ш${}_{\mathrm{an}}$= \( 4 \) (rounded)

BSD formula

$\displaystyle 1.329570000 \approx L(E/K,1) \overset{?}{=} \frac{ \# Ш(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \approx \frac{ 4 \cdot 1620.315189 \cdot 1 \cdot 2 } { {4^2 \cdot 609.338166} } \approx 1.329569753$

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 

This elliptic curve is semistable. There is only one prime $\frak{p}$ of bad reduction.

$\mathfrak{p}$ $N(\mathfrak{p})$ Tamagawa number Kodaira symbol Reduction type Root number \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\)
\((a^5-4a^3+3a-2)\) \(79\) \(2\) \(I_{6}\) Non-split multiplicative \(1\) \(1\) \(6\) \(6\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 79.3-d consists of curves linked by isogenies of degrees dividing 12.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.