Properties

Label 6.6.371293.1-79.3-c1
Base field \(\Q(\zeta_{13})^+\)
Conductor norm \( 79 \)
CM no
Base change no
Q-curve no
Torsion order \( 10 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\zeta_{13})^+\)

Generator \(a\), with minimal polynomial \( x^{6} - x^{5} - 5 x^{4} + 4 x^{3} + 6 x^{2} - 3 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, -3, 6, 4, -5, -1, 1]))
 
gp: K = nfinit(Polrev([-1, -3, 6, 4, -5, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -3, 6, 4, -5, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{5}+a^{4}-4a^{3}-3a^{2}+2a\right){x}{y}+\left(a^{5}-4a^{3}+a^{2}+2a-2\right){y}={x}^{3}+\left(a^{4}-3a^{2}-a-1\right){x}^{2}+\left(-57a^{5}+16a^{4}+293a^{3}-17a^{2}-350a-80\right){x}+390a^{5}-113a^{4}-2030a^{3}+120a^{2}+2423a+548\)
sage: E = EllipticCurve([K([0,2,-3,-4,1,1]),K([-1,-1,-3,0,1,0]),K([-2,2,1,-4,0,1]),K([-80,-350,-17,293,16,-57]),K([548,2423,120,-2030,-113,390])])
 
gp: E = ellinit([Polrev([0,2,-3,-4,1,1]),Polrev([-1,-1,-3,0,1,0]),Polrev([-2,2,1,-4,0,1]),Polrev([-80,-350,-17,293,16,-57]),Polrev([548,2423,120,-2030,-113,390])], K);
 
magma: E := EllipticCurve([K![0,2,-3,-4,1,1],K![-1,-1,-3,0,1,0],K![-2,2,1,-4,0,1],K![-80,-350,-17,293,16,-57],K![548,2423,120,-2030,-113,390]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^5-4a^3+3a-2)\) = \((a^5-4a^3+3a-2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 79 \) = \(79\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((4a^4-a^3-17a^2+2a+9)\) = \((a^5-4a^3+3a-2)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -6241 \) = \(-79^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{312138828714566}{6241} a^{5} - \frac{666874973719595}{6241} a^{4} - \frac{803095442738995}{6241} a^{3} + \frac{2161421201156764}{6241} a^{2} - \frac{582552361525647}{6241} a - \frac{274796597365423}{6241} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/10\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(2 a^{5} + a^{4} - 14 a^{3} - a^{2} + 17 a + 4 : 4 a^{5} - 13 a^{4} + 3 a^{3} + 19 a^{2} - 9 a - 2 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 45606.094824939202644530546191781771835 \)
Tamagawa product: \( 2 \)
Torsion order: \(10\)
Leading coefficient: \( 1.49691 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^5-4a^3+3a-2)\) \(79\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(5\) 5B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 5 and 10.
Its isogeny class 79.3-c consists of curves linked by isogenies of degrees dividing 10.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.