Properties

Label 6.6.371293.1-79.3-b1
Base field \(\Q(\zeta_{13})^+\)
Conductor norm \( 79 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\zeta_{13})^+\)

Generator \(a\), with minimal polynomial \( x^{6} - x^{5} - 5 x^{4} + 4 x^{3} + 6 x^{2} - 3 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, -3, 6, 4, -5, -1, 1]))
 
gp: K = nfinit(Polrev([-1, -3, 6, 4, -5, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -3, 6, 4, -5, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{5}-5a^{3}+5a\right){x}{y}+\left(a^{3}+a^{2}-3a-1\right){y}={x}^{3}+\left(a^{5}-a^{4}-6a^{3}+5a^{2}+9a-4\right){x}^{2}+\left(-8a^{5}+3a^{4}+40a^{3}-8a^{2}-45a\right){x}+9a^{5}-4a^{4}-48a^{3}+9a^{2}+59a+7\)
sage: E = EllipticCurve([K([0,5,0,-5,0,1]),K([-4,9,5,-6,-1,1]),K([-1,-3,1,1,0,0]),K([0,-45,-8,40,3,-8]),K([7,59,9,-48,-4,9])])
 
gp: E = ellinit([Polrev([0,5,0,-5,0,1]),Polrev([-4,9,5,-6,-1,1]),Polrev([-1,-3,1,1,0,0]),Polrev([0,-45,-8,40,3,-8]),Polrev([7,59,9,-48,-4,9])], K);
 
magma: E := EllipticCurve([K![0,5,0,-5,0,1],K![-4,9,5,-6,-1,1],K![-1,-3,1,1,0,0],K![0,-45,-8,40,3,-8],K![7,59,9,-48,-4,9]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^5-4a^3+3a-2)\) = \((a^5-4a^3+3a-2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 79 \) = \(79\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((4a^4-a^3-17a^2+2a+9)\) = \((a^5-4a^3+3a-2)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 6241 \) = \(79^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{21702535350}{6241} a^{5} - \frac{22817295041}{6241} a^{4} + \frac{67159076059}{6241} a^{3} + \frac{54772511851}{6241} a^{2} - \frac{36084307562}{6241} a - \frac{16274230797}{6241} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(a^{4} - 4 a^{2} - a + 3 : -a^{5} + 6 a^{3} - a^{2} - 7 a - 1 : 1\right)$
Height \(0.0011713697873235358072686064267420056249\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.0011713697873235358072686064267420056249 \)
Period: \( 107610.22356721157453697223324609030866 \)
Tamagawa product: \( 2 \)
Torsion order: \(1\)
Leading coefficient: \( 2.48239 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^5-4a^3+3a-2)\) \(79\) \(2\) \(I_{2}\) Split multiplicative \(-1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) .

Isogenies and isogeny class

This curve has no rational isogenies. Its isogeny class 79.3-b consists of this curve only.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.