Properties

Label 6.6.371293.1-79.3-a1
Base field \(\Q(\zeta_{13})^+\)
Conductor norm \( 79 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\zeta_{13})^+\)

Generator \(a\), with minimal polynomial \( x^{6} - x^{5} - 5 x^{4} + 4 x^{3} + 6 x^{2} - 3 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, -3, 6, 4, -5, -1, 1]))
 
gp: K = nfinit(Polrev([-1, -3, 6, 4, -5, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -3, 6, 4, -5, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{4}+a^{3}-4a^{2}-2a+3\right){x}{y}+\left(a^{4}-4a^{2}+a+3\right){y}={x}^{3}+\left(a^{5}+a^{4}-4a^{3}-4a^{2}+a+1\right){x}^{2}+\left(-3a^{5}-a^{4}+15a^{3}+6a^{2}-11a-2\right){x}+4a^{5}+3a^{4}-16a^{3}-11a^{2}+10a+4\)
sage: E = EllipticCurve([K([3,-2,-4,1,1,0]),K([1,1,-4,-4,1,1]),K([3,1,-4,0,1,0]),K([-2,-11,6,15,-1,-3]),K([4,10,-11,-16,3,4])])
 
gp: E = ellinit([Polrev([3,-2,-4,1,1,0]),Polrev([1,1,-4,-4,1,1]),Polrev([3,1,-4,0,1,0]),Polrev([-2,-11,6,15,-1,-3]),Polrev([4,10,-11,-16,3,4])], K);
 
magma: E := EllipticCurve([K![3,-2,-4,1,1,0],K![1,1,-4,-4,1,1],K![3,1,-4,0,1,0],K![-2,-11,6,15,-1,-3],K![4,10,-11,-16,3,4]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^5-4a^3+3a-2)\) = \((a^5-4a^3+3a-2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 79 \) = \(79\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((a^5-4a^3+3a-2)\) = \((a^5-4a^3+3a-2)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -79 \) = \(-79\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{3250240894}{79} a^{5} + \frac{9006299501}{79} a^{4} + \frac{301818019}{79} a^{3} - \frac{13536315178}{79} a^{2} + \frac{4470082885}{79} a + \frac{1835599092}{79} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(a^{5} - a^{4} - 6 a^{3} + 3 a^{2} + 9 a + 1 : -4 a^{5} + a^{4} + 21 a^{3} - 25 a - 6 : 1\right)$
Height \(0.019263609030894381206827834445555706402\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-a^{4} + 3 a^{2} + a - 1 : a^{3} - 2 a : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.019263609030894381206827834445555706402 \)
Period: \( 53060.199981557337172027960751972554689 \)
Tamagawa product: \( 1 \)
Torsion order: \(2\)
Leading coefficient: \( 2.51617 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^5-4a^3+3a-2)\) \(79\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 79.3-a consists of curves linked by isogenies of degree 2.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.