Properties

Label 6.6.371293.1-79.2-a2
Base field \(\Q(\zeta_{13})^+\)
Conductor norm \( 79 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\zeta_{13})^+\)

Generator \(a\), with minimal polynomial \( x^{6} - x^{5} - 5 x^{4} + 4 x^{3} + 6 x^{2} - 3 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, -3, 6, 4, -5, -1, 1]))
 
gp: K = nfinit(Polrev([-1, -3, 6, 4, -5, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -3, 6, 4, -5, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{5}-4a^{3}+a^{2}+2a-2\right){x}{y}+\left(a^{4}-4a^{2}+2\right){y}={x}^{3}+\left(a^{4}-5a^{2}+4\right){x}^{2}+\left(-16a^{5}+43a^{4}+24a^{3}-132a^{2}+82a-7\right){x}+127a^{5}-279a^{4}-308a^{3}+894a^{2}-296a-82\)
sage: E = EllipticCurve([K([-2,2,1,-4,0,1]),K([4,0,-5,0,1,0]),K([2,0,-4,0,1,0]),K([-7,82,-132,24,43,-16]),K([-82,-296,894,-308,-279,127])])
 
gp: E = ellinit([Polrev([-2,2,1,-4,0,1]),Polrev([4,0,-5,0,1,0]),Polrev([2,0,-4,0,1,0]),Polrev([-7,82,-132,24,43,-16]),Polrev([-82,-296,894,-308,-279,127])], K);
 
magma: E := EllipticCurve([K![-2,2,1,-4,0,1],K![4,0,-5,0,1,0],K![2,0,-4,0,1,0],K![-7,82,-132,24,43,-16],K![-82,-296,894,-308,-279,127]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^5-4a^3-a^2+2a+3)\) = \((a^5-4a^3-a^2+2a+3)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 79 \) = \(79\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((2a^4-a^3-10a^2+2a+7)\) = \((a^5-4a^3-a^2+2a+3)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -6241 \) = \(-79^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{1827330655296306713158}{6241} a^{5} + \frac{2267851397132794939683}{6241} a^{4} + \frac{8589934719036282821459}{6241} a^{3} - \frac{9380127050470680153907}{6241} a^{2} - \frac{8702685181704913513870}{6241} a + \frac{7579977528109156697231}{6241} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(2 a^{5} - 5 a^{4} - 5 a^{3} + 16 a^{2} - 5 a : 7 a^{5} - 17 a^{4} - 15 a^{3} + 56 a^{2} - 22 a - 7 : 1\right)$
Height \(0.038527218061788762413655668891111412804\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{1}{4} a^{5} - \frac{3}{2} a^{4} + \frac{3}{4} a^{3} + \frac{17}{4} a^{2} - 5 a + \frac{3}{4} : -\frac{3}{4} a^{5} + \frac{3}{2} a^{4} + 3 a^{3} - \frac{19}{4} a^{2} - \frac{13}{8} a + \frac{13}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.038527218061788762413655668891111412804 \)
Period: \( 13265.049995389334293006990187993138672 \)
Tamagawa product: \( 2 \)
Torsion order: \(2\)
Leading coefficient: \( 2.51617 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^5-4a^3-a^2+2a+3)\) \(79\) \(2\) \(I_{2}\) Split multiplicative \(-1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 79.2-a consists of curves linked by isogenies of degree 2.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.