Properties

Label 6.6.371293.1-27.1-a2
Base field \(\Q(\zeta_{13})^+\)
Conductor norm \( 27 \)
CM no
Base change yes
Q-curve no
Torsion order \( 7 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\zeta_{13})^+\)

Generator \(a\), with minimal polynomial \( x^{6} - x^{5} - 5 x^{4} + 4 x^{3} + 6 x^{2} - 3 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, -3, 6, 4, -5, -1, 1]))
 
gp: K = nfinit(Polrev([-1, -3, 6, 4, -5, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -3, 6, 4, -5, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{5}+a^{4}-5a^{3}-4a^{2}+6a+2\right){x}{y}+\left(a^{5}+a^{4}-5a^{3}-4a^{2}+5a+3\right){y}={x}^{3}+\left(a^{5}-a^{4}-5a^{3}+3a^{2}+4a+1\right){x}^{2}+\left(3a^{5}-2a^{4}-13a^{3}+5a^{2}+7a+3\right){x}+3a^{5}-4a^{4}-13a^{3}+14a^{2}+10a-5\)
sage: E = EllipticCurve([K([2,6,-4,-5,1,1]),K([1,4,3,-5,-1,1]),K([3,5,-4,-5,1,1]),K([3,7,5,-13,-2,3]),K([-5,10,14,-13,-4,3])])
 
gp: E = ellinit([Polrev([2,6,-4,-5,1,1]),Polrev([1,4,3,-5,-1,1]),Polrev([3,5,-4,-5,1,1]),Polrev([3,7,5,-13,-2,3]),Polrev([-5,10,14,-13,-4,3])], K);
 
magma: E := EllipticCurve([K![2,6,-4,-5,1,1],K![1,4,3,-5,-1,1],K![3,5,-4,-5,1,1],K![3,7,5,-13,-2,3],K![-5,10,14,-13,-4,3]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^4-a^3-4a^2+2a+2)\) = \((a^4-a^3-4a^2+2a+2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 27 \) = \(27\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-a^4+a^3+4a^2-2a-2)\) = \((a^4-a^3-4a^2+2a+2)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 27 \) = \(27\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{7918}{3} a^{4} - \frac{7918}{3} a^{3} - \frac{31672}{3} a^{2} + \frac{15836}{3} a + 1901 \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/7\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-a^{5} + a^{4} + 4 a^{3} - 3 a^{2} - 3 a + 1 : -a^{4} + 3 a^{2} + 2 a - 2 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 37449.229580398828775304123758220799559 \)
Tamagawa product: \( 1 \)
Torsion order: \(7\)
Leading coefficient: \( 1.25426 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^4-a^3-4a^2+2a+2)\) \(27\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(7\) 7B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 7.
Its isogeny class 27.1-a consists of curves linked by isogenies of degree 7.

Base change

This elliptic curve is not a \(\Q\)-curve. It is the base change of the following elliptic curve:

Base field Curve
\(\Q(\sqrt{13}) \) 2.2.13.1-507.2-c2