Properties

Label 6.6.300125.1-71.6-c2
Base field 6.6.300125.1
Conductor norm \( 71 \)
CM no
Base change no
Q-curve no
Torsion order \( 6 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 6.6.300125.1

Generator \(a\), with minimal polynomial \( x^{6} - x^{5} - 7 x^{4} + 2 x^{3} + 7 x^{2} - 2 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, -2, 7, 2, -7, -1, 1]))
 
gp: K = nfinit(Polrev([-1, -2, 7, 2, -7, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -2, 7, 2, -7, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(-4a^{5}+a^{4}+29a^{3}+13a^{2}-19a-5\right){x}{y}+\left(-4a^{5}+a^{4}+29a^{3}+13a^{2}-19a-5\right){y}={x}^{3}+\left(7a^{5}-3a^{4}-49a^{3}-16a^{2}+32a+5\right){x}^{2}+\left(259a^{5}-67a^{4}-1864a^{3}-861a^{2}+1180a+354\right){x}-8418a^{5}+2341a^{4}+60616a^{3}+26921a^{2}-39489a-11664\)
sage: E = EllipticCurve([K([-5,-19,13,29,1,-4]),K([5,32,-16,-49,-3,7]),K([-5,-19,13,29,1,-4]),K([354,1180,-861,-1864,-67,259]),K([-11664,-39489,26921,60616,2341,-8418])])
 
gp: E = ellinit([Polrev([-5,-19,13,29,1,-4]),Polrev([5,32,-16,-49,-3,7]),Polrev([-5,-19,13,29,1,-4]),Polrev([354,1180,-861,-1864,-67,259]),Polrev([-11664,-39489,26921,60616,2341,-8418])], K);
 
magma: E := EllipticCurve([K![-5,-19,13,29,1,-4],K![5,32,-16,-49,-3,7],K![-5,-19,13,29,1,-4],K![354,1180,-861,-1864,-67,259],K![-11664,-39489,26921,60616,2341,-8418]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a^4+a^3+6a^2-a-4)\) = \((-a^4+a^3+6a^2-a-4)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 71 \) = \(71\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-15a^5+4a^4+108a^3+49a^2-71a-17)\) = \((-a^4+a^3+6a^2-a-4)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -5041 \) = \(-71^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{61875465519471921}{5041} a^{5} + \frac{186718135324916475}{5041} a^{4} + \frac{56396294925773264}{5041} a^{3} - \frac{237534589193567280}{5041} a^{2} + \frac{46132023113659095}{5041} a + \frac{30668266783208944}{5041} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/6\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(138 a^{5} - 40 a^{4} - 995 a^{3} - 430 a^{2} + 663 a + 195 : -1638 a^{5} + 453 a^{4} + 11793 a^{3} + 5256 a^{2} - 7661 a - 2265 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 12723.959494764252722620040840363918388 \)
Tamagawa product: \( 2 \)
Torsion order: \(6\)
Leading coefficient: \( 1.29032 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^4+a^3+6a^2-a-4)\) \(71\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 71.6-c consists of curves linked by isogenies of degrees dividing 6.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.